学年

教科

質問の種類

数学 高校生

高1数学1のチャート102の例題についてです。 解説でやっていることは理解できるのですが、 共通解をαとおき、二つの式を繋いで、整理した式の判別式Dとして、それが=0になるように計算し、kを出すことはなぜできないのでしょうか。(2枚目) 勘違いしているところが多いので、根... 続きを読む

DOO 重要 例題 102 2次方程式の共通解 00000 2つの2次方程式 2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数の値を定め、その共通解を求めよ。基本 指針 570 2つの方程式に共通な解の問題であるから,一方の方程式の解を求めることができ たら、その解を他方に代入することによって、定数の値を求めることができる。しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では,次の解法 が一般的である。 2つの方程式の共通解を x =αとおいて、それぞれの方程式に代入すると ①, a2+α+k=0 2a2+ka+4=0 ...... これをαについての連立方程式とみて解く。 ②から導かれる k=--α を ① に代入(kを消去)してもよいが, 3次方程式と なって数学Ⅰの範囲では解けない。 この問題では,最高次の項であるα2 の項を消去す ることを考える。なお,共通の「実数解」という問題の条件に注意。 定 CHART 方程式の共通解 共通解をx=α とおく 葬共 171 重要 122 解く。 は、 3章 11 1 2次方程式 ...... 解答 共通解を x=αとおいて, 方程式にそれぞれ代入すると 2a2+ka+4=0 D, a²+a+k=0( (2) ①-② ×2 から (k-2)a+4-2k=0 ゆえに = (x)) α の項を消去。この考 (k-2)(a-2)=0 Za F3 F45 よってまた または α=2 k=2 え方は、連立1次方程式 を加減法で解くことに似 ている。 [1] k=2のとき 0=+x+x 2つの方程式はともに x'+x+2=0 となり, この方程式 数学Ⅰの範囲では, 73 の判別式をDとすると D=12-4・1・2=-7 D<0 であるから,この方程式は実数解をもたない。 x2+x+2=0の解を求め ることはできない。 ゆえに、2つの方程式は共通の実数解をもたない。(x)-0 [2] α=2のとき ②から [22+2+k=0よってk=-60sα=2を①に代入しても このとき、2つの方程式は2x2-6x+4=0, x2+x-6=0 0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな それぞれ x=1,2; x=2, -3 よって、2つの方程式はただ1つの共通の実数解 x= 以上から =-6, 共通解はx=2の よい。 注意 上の解答では,共通解 x=αをもつと仮定してやkの値を求めているから, 求めた値に対して,実際に共通解をもつか、または問題の条件を満たすかど うかを確認しなければならない。

解決済み 回答数: 2
数学 高校生

sin x /x→1の証明について 円を用いた面積比較からのはさみうちを使って証明する方法(一枚目)が有名ですが、微分係数の定義に当てはめる(二枚目)のはダメなんでしょうか? sin xのグラフの原点の傾きという意味なのですごく単純です

[証明] とし,∠ABC = 0 とする.この B 3 のグラ CD lim- 8-082 表しています。 とを を求めよ. かり記憶しておきましょう。 この大小関係は、よく利用されるものなのでしっ y=sin.x 12 0 三角関数に関する極限のうち、最も重要であるのは次の極限です . この定理を用いて, lim sin.x lim 110 I sin.x 1-0 I =1であることを示しましょう. [証明 ] x→0 とするから, 0<|x|<1としてよい。 この公式を証明するための準備として、次の定理の成立を示しておきましょう。 0<x< 10 において, sin.z<x<tanzi sinr<r<tanr の各辺を sin.x(0) で割って, 1<x 1 sinx COS.X ∴. 1> sinx > COS I I 図のように, 半径1の単位円周上に∠AOB=x (x は弧度法の角) となるように2点A, B をとる. lim cos.x=1であるから, はさみうちの原理により +0 このとき面積について, 点Aにおける円の接線と半直線 OB との交点をT とする. B. sinx lim =1 ......① 次に, 2 IC x+0 t< <<0のとき、x=-t とおくと << であるから,①より、 sinx sin(-t) sint IC lim lim- lim- =1 0115 x t+0 -t t+0 t △OAB <扇形 OAB < △OAT が成り立つ. それぞれの面積をx を用いて表すと ①.②より. 1 2 sinr<<tanr 1 2 0-(-x+x) mil lim sinx TC x0 =1 なる.したがって, 0<x<2/27において、 no inil が成り立つ. sinr<r<tang 薫り立つ. (証明終わり) この極限公式は,xが十分に小さい (0に近い)とき, sinx≒x であることを表しています.

解決済み 回答数: 2