学年

教科

質問の種類

数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0
数学 高校生

(2)について質問です。下線を引いているようになぜm+r+1/n≦1とm+r+1/n≧1で場合分けをするのですか?またその後に線を引いている(n-r)k+r(k+1)はどのようにして計算したら出てくるのかも分かりません💦どなたか教えてほしいです

第9章 整数・数学と人間の活動 40 よって、等式①は成り立つ。 (1)〜(曲)より、すべての実数xに対して, 等式①は成り 立つ。 [x]≦x<[x]+1 より [x] <x<[x]+1 n n [x] は整数であるから,[nx] は, nk, nk+1,nk+2, .........nktn-1 (kは整数)のいずれかで表される. [nx]=nk+r(r=0, 1, 2,…, n-1) kt1≦x<k+r+1 とすると,①より ......③ n n ここで,m=0,1,2, …………, n-1 として ③の各辺 に皿を加えると, n m+r m k+ ≦x+ m+r+1 <k+ n n n m+r+1 22 m+r k≦k+ n m n -≦1,すなわち,0≦m≦n-r-1 のとき, -≤ x + <h+ m+r+1 ≦k+1 n より[x+m-k =k n m+r,すなわち, n-r≧m≦n-1のとき, n m k+1≦k+m+rsxt. <k+ n m+r+1 <k+2 n n より,[x+m]=k+1 n したがって, [x]+[x+/-]+[x+2]+... + [x+ n-r n ] + [x x+ n-r n +x+ n. n =(n-r)k+r(k+1)=nk+r また②より よって、等式 [nx]=nktr [x]+[x+2]+[x+2]+....+[x+タリー[28] は成り立つ. 注 (1)において, m = 0, 1, 2 として ktmtr r≤x+. m m+r+1 <h+ のときの [x+7] 3 3 3 3 の他に着目すると, m+r+11 のとき [+] 3 mtr = 21のとき, [x+k+1 m =k r=0 のときは,これを満 すmの値はない。 kとなるのは, [x], n-r k+1となるのは、 n の(n-r) 個 [ x + 1 = 1 ] 0 n- の個

回答募集中 回答数: 0