学年

教科

質問の種類

数学 高校生

(確率)Z会共テ実践 この問題が(2)から分からなくなりました。 教えて欲しいです🙇‍♀️

第3問 (選択問題) (配点 20 ) 図のように、東西方向と南北方向に通路が作られた倉庫の中で、 通路に沿って荷物 を運ぶロボットがある。 通路と通路が交差する点から,どちらかの通路に沿って一定 の方向に移動するとき、 次に通路と通路が交差する点までを1プロックと数えるもの とする。なお、どの方向にも十分に進むことができるものとする。 北 N (2) このロボットは,どの交差点においても. 東西南北の4方向のうち移動すること のできる方向に等しい確率で移動する設定となっているとする。 つまり、来た道を 戻ることもできる。 (3)荷物を素早く運ぶために、ロボットが点Aから点Cへ最短距離で到達する確率 をできるだけ大きくしたい。 そこで、図の点 X1,X2, X3, ..., X10 のうち、1点 を進めないようにすることを考えた。 西 A D. C E 南 B ロボットが点Aから点Cに最短の距離で到達する。 つまり 全部で4ブロック 東 進んで点Cに到達する確率は ウ エオカ 全部で6ブロック進んだ時点で キ はじめて点Cに到達する確率は である。 クケコ 西 北 IXT IX6 X A はじめ、ロボットは点Aに置かれている。 (1) このロボットには, 東西南北の4方向それぞれについて、 何ブロック進んだか を記録しておく機能がある。 東に進んだブロック数を x, 北に進んだブロック数を 西に進んだブロック数を南に進んだブロック数をw とする。 また、ロボットが点Cに最短の距離で到達したとき、点B.D.Eを通っていた 条件付き確率をそれぞれPB, PD, PE とすると,PB, PD, PEの大小関係とし て正しいものはサである。 (i)点X2 を進めないようにする。 南 C 11 サの解答群 点Aの1ブロック東の点をF, 点Aの1ブロック北の点をGとおくとき、点 シ ロボットが点Cに到達するのはアのときであり,点Aから点Cに最短の距 Fを通って,点Aから点Cに最短の距離で到達する確率は であり、 離で到達するのはイのときである。 □の解答群 OO PB<PD=PE PB=PD<PE PB=PD=PE ①Pb <PB= PE @PB= PE <PD PE<PB = PD ⑤PD=PB<PB セ ソ Gを通って, 点Aから点Cに最短の距離で到達する確率は であ タチツ (数学Ⅰ・数学A 第3間は次ページに続く。) 8 x=z-2かつy=w-2 x=z-1 かつy=w-l x=zかつy=w x=z+1 かつy=w+1 ⑩x=z+2 かつy=w+2 の解答群 ①x=z-2またはy=w-2 ③ x=z-1 または y=w-1 ⑤x=z または y = w ⑦x=z+1 または y=w+1 ⑨x=z+2またはy=w+2 @r=y=z=w=0 ②x=y=0かつz=w=1 ①r=y=z=w=2 ③ x=y=0または z=w=1 ④r=y=1かつぇ=w=0 ⑤ x = y=1 または z =w=0 ⑥ x=y=0かつぇ=w=2 ⑦ x = y = 0 または z=w=2 3 x=y=2かつぇ=w=0 ⑨ r = y = 2 または z =w=0 -0-20- テ よって、点Aから点Cに最短の距離で到達する確率は である トナニ (1)点X5 を進めないようにするとき、点Aから点Cに最短の距離で到 率は である。 ネノハ -0-21-

未解決 回答数: 0
数学 高校生

高校数学 数列 黄色の線で引いた「y=2とすると」の意味がわかりません。その前の問題でy=2と置いたのは数列cnを等比数列にするためであって、一番最後の問題でcnを等比数列にする(y=2にする)理由がなくないですか? 問題は下に貼ります。回答お願いします🙇

第3問 数列 出題のねらい • 等差数列. 等比数列の一般項とその和を求められる か。 ・Σを用いた数列の和の計算ができるか。 ・階差数列を利用して数列の一般項が求められるか。 解説 {a} は等差数列であるから. すなわち, 2-y=0 のときであるから, y=2 このとき, Cn=3{(2-2)n+4-2}-2 +1 =6.2"+1 =24.2"-1 であるから, ②ck は初項 24. 公比 2.項数nの等 Ck as+a=2a6 よって, 比数列の和となり ......ア 24(2"-1) Ck= k-1 2-1 (2x+4)+(x+17)=2.3.z より である。 x=7 ......イ このとき, as=18, 46=21 となり{anの初項をα. 公差をdとすると, d=ac-as =21-18 =3 より、 as=a+4d =a+4・3 =18 a=6 よって, an=a+(n-1)d =6+(n-1)・3 =3n+3 また. bm=230m =2+1 =4.2"-1 であるから, {bm} は =24 (2-1) D ······ク~サ (2)=(abi-yabi) k-1 =a+b+1-y yarb =(azbz+asbs+... +anbn+an+1bn+1)-ySn ={a,b+azbz+ ...... +anbn) +an+1bu+1-abı}-ySm =(aibatan+1bm+1-a,b)-ySm k-1 =Sn+an+1bw+1-6・4-yS =(1-y)Sn+an+1bs+1-24 ...... ② ......シ, スセ (3) 数列{d} の初項が1で, {dn} の階差数列が {ambm ......ウ, エ であるから, n≧2のとき, dm=d+ +arbe =1+S-1 ......③ ここでy=2として ① ②より、 =-Sn+an+1bn+1-24 CK Ck 24(2"-1) k-1 初項 4. 公比 2 ・・・・・・オカ の等比数列である。 よって, (1) Cn=an+1bg+1-yanbu =(3n+6) 2"+2-y(3n+3) 2月+1 =3{(n+2).2-y(n+1)}.2"+1 =3{(2-y)n+4-y}.2"+1 これが等比数列の一般項になるのは, 3{(2-y)n+4-y}が定数 Sn=an+1b月+1-24.2" (n=1,2, 3, ······) n≧2のとき、 S-1=anbm-24-2-1 =(3n+3)-2"+1-6・2+1 =3(n-1) 2 +1 したがって, ③より, n≧2のとき, dn=1+3(n-1)-2+1 また, d=1 以上より, n=1,2,3, dn=1+3(n-1)・2"+1 のとき, .......ソ~ツ

未解決 回答数: 3