学年

教科

質問の種類

数学 高校生

数学の質問です (2)の問題でなぜ(1)のような場合分けのやり方ではダメなのですか? 解答よろしくお願いします🙇

第1章 IP 19 絶対値記号のついた学式 33 (解Ⅲ) 34 を利用すると・・・) Y y=x-3| のグラフは右図のようになるので, PAS y=x-31 3 y<2 となるæの値の範囲は 1 <x<5 2 y=2 次の不等式を解け (1) x-3/<2 .......① (2)|x+1/+/x-1/4 ......② 精講 絶対値記号の扱い方は,不等式の場合も方程式 (18) と同様に、 国 で学んだ考え方が大原則ですが,ポイントⅠの考え方が使えるなら ば、場合分けが必要ない分だけラクです。 また,3で学ぶグラフを利用する考え方(解Ⅲ)も大切です。 (1) (解Ⅰ) 解答 |-3|<2 は絶対値の性質より 2<x-3<2 (解Ⅱ) : 1<x<5 (2) i) <-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)-(x-1)<4 . -x-1-x+1<4 よって, -2<x<-1 i-1≦x≦1 のとき x+1≧0, x-1≦0 だから -2<x ? ②は (x+1)(x-1) <4 .. 0.x+2<4 0.x<2 よって, -1≦x≦1 をみたすすべての i) 1<z のとき x+1>0, x-1>0 だから ②は (x+1)+(x-1) <4 .. x<2 よって, 1<x<2 0 1 3 ◆不等式をみたす xを求めるので は式に残して おく 基礎問題 「基礎間」とは、入試に できない)問題を言いま 本書ではこの「基礎問」 効率よくまとめてありま ■入試に出題される 取り上げ、教科書 行います。 特に、 実にクリアできる ■「基礎間」→「精 題」で1つのテー ■1つのテーマは原 x-3 |r-3|= (x≥3) (3) i) x≧3のとき ①はx-3<2 :.x<5 よって, 3≦x<5 ii) x<3のとき ①は(x-3)<2 .. -x+3<2 ∴ 1<x よって, 1<x<3 i), ii) をあわせて1<<5 れないこと <x<3と仮定し れないこと i) ~i) をあわせて, -2<x<2 絶対値の中身が 0 となるところ で場合分け ポイント x≧3と仮定し ていることを忘 Ⅱ. |A| = A= -A (A<0) 1.xk<a (a>0) のとき, A (A≥0) -a<x<a ていることを忘 演習問題 19 次の不等式を解け. (1) |-2|>2 (2)|x-1|<|2x-3|-2

回答募集中 回答数: 0
数学 高校生

看護の学校に進学希望の高3なんですけど数1で分からないとこがあり教えて欲しいです、 ケース9-3(1)がわかりません、それと逆数がよく理解できませんよろしくお願いします

OB √3+√2 と このように、逆数の関係になってい 基本対称式を作る数が, √3-√2 √3+√2 √√3-√2 ある場合があるよ。 出題の形には, √3-√2 √3+√2 1 x=- y= として, x+yやxy を求める場合 √3+√2 √√3-√2 √3-√2 ②x= √3+√2 として,x+1やx1を求める場合 x XC がある。特徴的なのは、基本対称式の積の方で, あたりまえだけど ①ではxy=1, ②ではx. =1となることだ。 XC 19-3 √2-√3 x= √2+√3 このとき、次の式の値を求めよ。 (新潟県厚生連佐渡看護専門学校) 1 (1) x+ 30 (2) x² + ( x 基本対称式を求めよう。 ← (1) は基本対称式のうちの1つ 処方せん (2)x2+y' を基本対称式x+y, xy で表すのと同じだよ。 x+1/2=(x+1)-2.8.12=(x+1)-2 (S) 文 √√2-√3 (√2-√3) 2-2√6+3 (1) x= 解答 √2+√3 (√2+√3) (√2-√3) 2-3 =2√6-5 まずは 有理化。 1 √√2+√3 (√2+√3) 2+2√6+3 x √2-√3 (√2-√3)(√2+√3) 812-3 =-2√6-5 よって x+ x =(2√6-5)+(-2√6-5-10... 答 等号が成立するよう差引計算をする。 (2) =(x+1)-2=(-10)^2=98 ・答 -2x・・ -=-2 1 X まず平方を作る。 ✓チェック 9-3 解答 別冊 p.9 1 x=√3-√2のとき,次のものを求めよ。 4501-0 1 (1)x+ 40 第1章 数と式 (2)x+ (3)x+2 1 (愛仁会看護助産専門学校) 有

未解決 回答数: 0