学年

教科

質問の種類

数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

解決済み 回答数: 1
数学 高校生

・数C 式変形がどうなっているのか教えてほしいです、よろしくお願いします

634 基本 例題 30 線分の平方に関する証明 0000 △ABC の重心をGとするとき,次の等式を証明せよ。 (2) AB2+AC2=BG2+CG2+4AG2 (1) GA + GB + GC= 0 D ( 基本 15 重要 33. 基本 71、 指針 (1) 点を始点とすると, 重心Gの位置ベクトルは 0は任意の点でよいから, Gを始点としてみる。 ABO OG = (OA+OB+OC) (2)図形の問題→ベクトル化も有効。 すなわち, AB2 など ( 線分)には AB=|AB|=|6-a として,内積を利用するとよい。 なお,この問題では BG?, CG2, AG2 のように, G を端点とする線分が多く出てくる から,Gを始点とする位置ベクトルを使って証明するとよい。 すなわち、GA=d, GB=6,GC= として進める。 (1)の結果も利用。 CHART 線分)の問題 内積を利用 (1) 重心Gの位置ベクトルを, 点 0 LA 解答 に関する位置ベクトルで表すと 三 OG= (OA+OB+OC) である 3 文 G 別解 (1) GA+GB+GC =(OA-OG)+(OB-OG) + (OC-OG) =OA+OB+OC-30G =0 から,点Gに関する位置ベクト ルで表すと B C GG=1/21 (GA+GB+GC) 3 OA: 4:00 ゆえに GA+GB+GC=0 GG=0 (2) GA=a, GB=, GC= c とすると,(1)の結果から a+b+c=0 ゆえに 条件式 また よって AB=b-a, AC=cka=-2a-6 AB2+AC2-(BG'+CG2+4AG2) =|AB|+|AC|-|BG+CG+4|AGI) =16-a+1-24-6 2G-1-6²-la+61-41- ゆえに =(16-26 a+la)+(4a²+4㕯+1612) -16-(la+2ab+16)-4a² =0 ベクトル AB2+AC2=BG2+CG2+4AG2 HADA HOBA 練習 次の等式が成り立つことを証明せよ。」( ② 30 (1) △ABCにおいて, 辺BCの中点をMとするとき B'+AC2=2(AM'+BM) (中線定理) (2) △ABCの重心をG, 0 を任意の点とするとき AG2+BG2+CG2=0A2+ OB2+ OC2-30G 2 文字を減らす方針で <A=B⇔A-B = 0 AB²=|AB|²

解決済み 回答数: 1