学年

教科

質問の種類

数学 高校生

数学の質問です (2)の問題でなぜ(1)のような場合分けのやり方ではダメなのですか? 解答よろしくお願いします🙇

第1章 IP 19 絶対値記号のついた学式 33 (解Ⅲ) 34 を利用すると・・・) Y y=x-3| のグラフは右図のようになるので, PAS y=x-31 3 y<2 となるæの値の範囲は 1 <x<5 2 y=2 次の不等式を解け (1) x-3/<2 .......① (2)|x+1/+/x-1/4 ......② 精講 絶対値記号の扱い方は,不等式の場合も方程式 (18) と同様に、 国 で学んだ考え方が大原則ですが,ポイントⅠの考え方が使えるなら ば、場合分けが必要ない分だけラクです。 また,3で学ぶグラフを利用する考え方(解Ⅲ)も大切です。 (1) (解Ⅰ) 解答 |-3|<2 は絶対値の性質より 2<x-3<2 (解Ⅱ) : 1<x<5 (2) i) <-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)-(x-1)<4 . -x-1-x+1<4 よって, -2<x<-1 i-1≦x≦1 のとき x+1≧0, x-1≦0 だから -2<x ? ②は (x+1)(x-1) <4 .. 0.x+2<4 0.x<2 よって, -1≦x≦1 をみたすすべての i) 1<z のとき x+1>0, x-1>0 だから ②は (x+1)+(x-1) <4 .. x<2 よって, 1<x<2 0 1 3 ◆不等式をみたす xを求めるので は式に残して おく 基礎問題 「基礎間」とは、入試に できない)問題を言いま 本書ではこの「基礎問」 効率よくまとめてありま ■入試に出題される 取り上げ、教科書 行います。 特に、 実にクリアできる ■「基礎間」→「精 題」で1つのテー ■1つのテーマは原 x-3 |r-3|= (x≥3) (3) i) x≧3のとき ①はx-3<2 :.x<5 よって, 3≦x<5 ii) x<3のとき ①は(x-3)<2 .. -x+3<2 ∴ 1<x よって, 1<x<3 i), ii) をあわせて1<<5 れないこと <x<3と仮定し れないこと i) ~i) をあわせて, -2<x<2 絶対値の中身が 0 となるところ で場合分け ポイント x≧3と仮定し ていることを忘 Ⅱ. |A| = A= -A (A<0) 1.xk<a (a>0) のとき, A (A≥0) -a<x<a ていることを忘 演習問題 19 次の不等式を解け. (1) |-2|>2 (2)|x-1|<|2x-3|-2

回答募集中 回答数: 0
数学 高校生

一番のx=って点ABの座標だと思うんですけど、2番で①が実数になるからと言っている意味がよく分かりません、交点をとるからという意味ですか?

●7 斜めの回転体 1 曲線 y=- IC >0) をCとする。 直線 y=x上の点Pにおいて直線y=xに直交する直線を考 える. この直線と曲線Cは2点 A, B で交わっているとする (2) 曲線と直線x+y=4で囲まれた部分を直線y=xの周りに1回転してできる回転体の体 (1) Oを原点(0,0)とし, OP=1とするとき, 線分AP の長さを†で表せ。 積を求めよ. 回転軸上に変数をとる 回転軸が斜めになっている場合であっても,回転 軸上に変数(目盛り)をとれば、座標軸が回転軸の場合と同様,体積を S's (1) dt で計算することができる。 ここで, S(t)は右図太線での回転体の 断面積である. 回転軸上に変数をとるとは,「回転軸上の定点(例題ではO) からの距離を変数で表す」ということで、例題ではこのような設定になって いるので難しく考える必要がない。 演習題のように変数をとる場合は注意が必 (演習題の解答のあとで解説する) 解答量 (1)Pは第1象限にあるので, OP=t のときP (津田塾大学) t t=b t=a 回転体の断面積S(t) t √2 このときにx+y=√2tだから,C:xy=1と連立し て」を消去すると, C (√2t-x)=1 :.x2-√2tx+1=0 x= √2t±√2t2-4 2 複号のマイナスの方をAとして t AP=√2 √2 √21-√2(12-2) 2 =√t-2 P t x+y=4 B XC V2 P (2) ①が実数になるので 212-40 すなわち√2 であり,また, 1:x+y=√2tx+y=4と一致するとき, t=2√2 である. よって, 求める体積 V は, 2√2 v=f2x· AP²dt= V= 2/2 ·AP²dt=√(t²-2) dt=r -13-2t 2√2 Cは直線 y=x に関して対称だ らPはABの中点になる. ={16/2-4√2- 2 √2-2√2 2 π

回答募集中 回答数: 0
数学 高校生

(2)数学的帰納法を使うとどういう回答になりますか?

基礎問 45 はさみうちの原理(Ⅱ) 数列{an} は 0<a1 <3, an+1=1+√1+an (n=1, 2, 3, ... をみたす ものとする。このとき,次の(1),(2),(3)を示せ. (1) n=1,2,3, ・・・ に対して, 0<an<3 よって, n≧2 のとき, 3-a.<(3-an-)<()(-a)<<()(3-a) 78 79 \nl (2) n=1,2,3, に対して, 3-an≦ (3) liman=3 精講 11-0 (1) 漸化式から一般項を求めないで数列の性質を知りたいときま ず数学的帰納法と考えて間違いありません。 (B (2)これも (1) と同様に帰納法で示すこともできますが、 「台」を 「=」としてみると,等比数列の一般項の公式の形になっています。 (3)44 のポイントの形になっています。ニオイプンプンというところでしょう。 解答 (1)0<a<3………①を数学的帰納法で示す. mir (i) n=1 のとき, 条件より 0<a< 3 だから, ① は成りたつ. (ii)n=k(k≧1) のとき, 0<ak <3 と仮定すると, 1 <ak+1<4 .. 1<√1+ak<2 n=1のときも考えて, 3-ans \n-1 (3-a) (3)(1),(2)より 0<3-ans()(3-as) 前に不等式証明 あるので匂いプンプン 11-00 ここで, lim はさみうちの原理より (3- = 0 だから, 42 lim (3-am)=0 liman=3 参 考 43 でグラフを利用して数列の極限 を考えました.今回は, 38の復習も 兼ねて, グラフで考えてみます。 (a) y=x as aa y=f(x) y=f(x)=1+√1+x と y=xのグラフを かき, α1 を 0<x<3 をみたすようにとれば, a2, a, ・・・と, どんどん3に近づいていく様 子が読み取れるはずです . (an) d a 3 10 I ポイント 一般項が求まらない数列{an} に対しても lima は, 次の手順で求めることができる ① anのとりうる値の範囲をおさえる 第4章 両辺に1を加えて 2<1+1+ <3 .. 2<ak+1 <3 よって, 0<ak+1 <3 が成りたつ. (i), (ii)より, すべての自然数nについて ① は成りたつ. (2) an+1=1+√1+an3-an+1=2√1+αn まず,左辺に3+1 (右辺)= (2-√1+am)(2+√1+αn) 2+√1+an をつくると (1)より,1<√1+am<2の両辺に2を加えて3<2+√1+an <4 両辺の逆数をとって1/1 3-4 >0 だから, 2+√1+an 3 3-a (3-an) 2+√1+an3 ∴.3-an+1 < ÷(3- ② liman(=α) を予想する →80 ③ |an+1-α|≦klan-α (0<k<1) の形に変形し て, はさみうち 3-an 2+√1+an <右辺にも3-αがでて くる 演習問題 45 xn²+2 √2+1= 1, 2, ...) で表される数列{rn} に 2.xn ついて 次の(1),(2),(3)を示せ. (1) √2+1<In (2) n+1-v (2) (3)lim=√2 8012

回答募集中 回答数: 0
数学 高校生

至急  明日テストなんですが数Aのプリントに解説がないので、分かるやつだけでも全然いいので解説(途中式とか)して欲しいです!

2学期 1-1, 2, 3 数学A 中間試験用演習プリント~レベルやや難~ 1 A, B, C の3人がじゃんけんを1回するとき, 次の場合の確率を求めよ。 (1) Aだけが負ける。 (1)1/1 1 (2) 3 (2)1人だけが勝つ。 24人がじゃんけんを1回するとき, 次の確率を求めよ。 (1) 1人だけが勝つ確率 (3) あいこになる確率 (2)2人が勝つ確率 ( )組( ) 番 名前( 73個のさいころを同時に投げるとき, 次の場合の確率を求めよ。 (1) 出る目の最大値が3以下である。 37 解答(1)/1/ (2) 8 216 (2) 出る目の最大値が4である。 8 正六角形ABCDEF の頂点を動く点Pが点Aの位置に ある。 1個のさいころを投げて, 3の倍数の目が出たと きには, Pは左回りに1個次の点へ移り、他の目が出た ときはPは右回りに1個次の点に進む。 Br F 16 解答 (1) 4 27 2 13 (2) (3) 9 27 3 直線上に点Pがあり, 1枚の硬貨を投げて, 表が出たら右に2m, 裏が出たら左に2m だけ進む。 硬貨を6回投げたとき, 次の確率を求めよ。 (1) 点Pがもとの位置から右に4m (2) 点Pがもとの位置に戻る (1)3回投げたとき, 点Pが点Bにある確率を求めよ。 (2) 4回投げたとき, 点Pが点Aに戻る確率を求めよ。 (3) 6回投げたとき, 点Pが点Aに戻る確率を求めよ。 D 解答 (1) 20 8 (2) (3) 27 25 81 E 解答 (1) 15 64 5 (2) 16 4 AとBがテニスの試合を行うとき, 各ゲームで A,Bが勝つ確率は,それぞれ 喙号で 9 当たりくじ4本を含む10本のくじをA,Bがこの順に1本ずつ引く。 ただし, 引いたく じはもとに戻さないものとする。 あるとする。 3ゲーム先に勝った方が試合の勝者になるとき, Aが勝者になる確率を求め よ。 Aが当たりを引いたとき, Bが当たりを引く条件付き確率は ア イ であるから, A, B が2人とも当たりを引く確率は ウ である。 したがって, Bが当たりを引く確率は エオ 解答 64 81 5 赤玉1個と白玉2個と青玉3個が入った袋から1個の玉を取り出し, 色を調べてからもと に戻すことを5回行う。このとき, 赤玉が1回, 白玉が2回, 青玉が2回出る確率を求め よ。 5 解答 36 3個のさいころを同時に投げるとき, 次の確率を求めよ。 (1) 出る目の最小値が3以上である確率 (2) 出る目の最小値が3である確率 解答 (1) 27 87 37 (2) 216 カ キ である。 ク また, A, B に続き, Cがくじを引くとき, Cが2本目の当たりを引く確率は で ケ ある。 (ア) 1 解答 (イ) 3 (ウ) 2 (カ) 2 (ク) 113 (エオ) 15 (キ) 5 (ケ) 5

回答募集中 回答数: 0