学年

教科

質問の種類

数学 高校生

どうして矢印のところCなしの式に変形できるんですか、? 公式ですか?

求めよ。 基本 38 □ 40 確率の条件から未知数の決定 例題 基本の 13 00000 15本のくじの中に何本かの当たりくじが入っている。 この中から同時に2本引 とき 1本が当たり 1本がはずれる確率が 12 35 であるという。 当たりくじは 基本 38 は、確率がnの式で表されるから, 当たりくじの本数をnとして,まず, 確率を計算する。 ここで 12 35 とおいてnの方程式 同本あるか。 通り る」場合が より求める を解く。 なお, 文章題では, 解の検討が大切で,nのとりうる値の範 囲に注意が必要である。 この問題では, 1本が当たり 1本がは ずれる確率が0ではないから, 1≦x≦14であることに注意。 +£3 (1) 2 2章 ⑥事象と確率 誰が勝つか り 当たりくじの本数をnとすると, n は整数で ...... 三で勝つか 鞳答 亘り 事象の確率 る考え方。 15C2通り 当たり1本, はずれ1本を取り出す方法は nC1× 15-nC1 B C とす したがって, 条件から 1≤ n ≤14 また、はずれくじの本数は 15-nで表される。 15本から2本を取り出す方法は 0≦x≦15でもよいが、 n=0 (すべてはずれく じ), n=15 (すべて当た りくじ) の場合 1本が 当たり 1本がはずれと なることは起こらない。 よって, 1≦x≦14 とし ている。 ナが勝つのは nC1X15-nC1_12 = 15.14 15C2= ・=15・7 2-1 15C2 35 n(15-n) 12 (*) すなわち 15.7 35 分母を払って整理すると n2-15n+36=0 通り (6) 左辺を因数分解して (n-3)(n-12)=0 これを解いて n=3,12 または ①を満たすの値は n=3,12 よって当たりくじの本数は 3本または 12本 何人) 解の検討。 n=3,12は ともに①を満たす。 通り 2人を4人 考えて 4 (通り) 2! p.409 EX31 くじを引く順序を考える 当たりくじ本をa, Q2, an; はずれくじ 15-n本を by, by,…, is-n として, (1本目 2本目) (当たり, はずれ), (はずれ,当たり)のように引く順序を考えると,題 注意の確率は, 2×P1×15-mP1_n (15-n) 15.7 15P2 となり、解答の(*)の左辺と一致する。 この方針でもよいが、上のように組合せで考えると, 当たり はずれの順序を考える必要が まない分だけ計算しやすい。 袋の中に赤玉、白玉が合わせて8個入っている。 この袋から玉を2個同時に取り出 ~すとき、赤玉と白玉が1個ずつ出る確率が- であるという。 赤玉は何個あるか。 p.410 EX32、

解決済み 回答数: 1
数学 高校生

次の問題の青線のところで右と左がよく分からないのですが右の解説?のところを読んでも理解できないのですがどなたか解説お願い致します🙇‍♂️

例題 32 1次不等式の文章題 ★★ 何人かの子どもに果物を配る。 1人に4個ずつ配ると26個余るが, 1人に 9個ずつ配っていくと最後の子どもは果物はもらえるが他の子どもより少 なくなる。 子どもの人数と果物の個数を求めよ。 思考プロセス 未知のものを文字でおく Action》 文章題は, 未知のものをxとおいてその変域に注意せよ 子どもの人数, 果物の個数のどちらかをxとおく。 子どもの人数をxとおく → 果物の個数は4x +26 → x-26 果物の個数をxとおく → 子どもの人数は 4 子どもの人数をxとおいた方が, 簡潔に表すことができる。 解 子どもの人数をx人とおくと, 果物の個数は (4x+26) 個 である。 x は自然数である。 これより 9(x-1) <4x+26<9x 9(x-1) <4x +26 ① すなわち l4x+26<9x ①を解いて x < 7 ③ 26 ②を解いて x> (4) 5 26 ③④より <x<7 5 この不等式を満たす自然数x を求めると このとき, 果物の個数は x = 6 4x+26=4・6+26 = 50 1人に9個ずつ配ると最 後の子どもも果物をもら えるから 9(x-1) <4x+26 最後の子どもは他の子ど もより少ないから 4x+26<9x よって 9x-8≦4x+ 26 ≦ x - 1 としてもよい。 26 = 5.2 であるから, 5 5.2<x<7 を満たす自然 数x 6 したがって 子ども6人、 果物 50個

解決済み 回答数: 1
数学 高校生

(2)の問題についてです。 計算したあとのmの値が-2と3なのはわかるのですが、なぜ-1が出てくるのか分からないので教えて欲しいです

この (1)xの2次方 に、定数mの値の範囲を定 (2)xの方程式 (+1)x+2(m-1)x+2m-5=0がただ1つの実数料 つとき、定数mの値を求めよ。 CHART&SOLUTION 方程式が実数解をもつ条件 ののた (2次の係数) 0 ならば 判別式 Dの利用 (1)「2次方程式」が実数解をもつための条件は D≧0 2.10% MOITU (2)単に「方程式」 とあるから,+1=0 (1次方程式) の場合と m+1≠0 (27 の場合に分ける 2次方程式の判別式をDとするとの係数? (1) 2次方程式であるからm-2≠0 よって m=2 2次方程 基本 例題 80 右の図のように, BC=20d の三角形ABCがある。 辺 となるように2点D,Eを 垂線を引き、 その交点を 長方形 DFGE の面積が2 の長さを求めよ。 CHART & SOLUTIO 文章題の解法 ① 等しい関係の式で ②解が問題の条件に FG=x として, 長方形 DF xの2次方程式を解く。 最 忘れずに確認する。 ={-(m+1)}-(m-2)(m+3)=m+7 2次方程式が実数解をもつための条件は D≧0 であるから 26′型であるから、解答 D = b²² 4 =b2-ac を称 FG=x とすると,0<F m+7≥0 0<x<20 よって m≥-7 ゆえに -7≦m<2,2<m m≠2かつm≧ また, DF=BF = CG (2) [1] m+1=0 すなわち m = -1 のとき -4x-7=0 2DF=BC-FG -7 よって、ただ1つの実数解 x=- 7 をもつ。 よって DF= 20-x 2 4 m=-1 [2] m≠-1 のとき よって 方程式は2次方程式で, 判別式をDとすると 2次方程式がただ1つの実数解をもつための条件は D=lであるから これを解いて m=-2,3 -m²+m+6=0 (m+2)(m-3)=0 これらは mキー1 を満たす。 以上から、求めるの値は m=-2,-1, 3 E-S を代入 長方形 DFGE の面積は ←判別式が使えるのは 20-x ゆえに x= 22=(m-12-(m+1)(2m-5)=-m²+m+6 2次方程式のとき。 ← 2次方程式が重 つ場合である。 整理すると これを解いて x²- x= ここで, 02√158 10-8<10-2 よって、この解はい したがって FG=

解決済み 回答数: 1
数学 高校生

数2の質問です! 240の[ ] で囲んであるところは どこから読み取れるのかを教えてほしいです! よろしくおねがいします🙇🏻‍♀️՞

な直線が,右の図のように異なる2点A, B で 交わっている。 このとき, 原点を0として | △OAB の面積Sの最大値とそのときの点 A, Bの座標を求めよ。 A J B √3 v3 0 考え方 文章題では何を変数にするかがポイントである。なるべく計算がらくにな るように決めるとよい。 本間では,△OAB y 軸に関して対称であるから, 点Bのx座標を x とすると, 2点A, B の座標がx で表せる。 あとはS をxの式で表し,変数xのとりうる値の範囲に注意して, Sの増減を調べ る。 解答 2点A,Bはy軸に関して対称であるから A (-x, 3-x2), B(x, 3-x2) ただし0<x<3 1 とおける。 このとき S=1/2x(3-x2)=-x+3x 2 S'=-3x2+3=-3(x+1)(x-1) ①の範囲において, S' = 0 となるのは, x 0 ... 1 √3 S' + 0 x=1のときであり, Sの増減表は、右のよう になる。 S K 2 よって, Sはx=1で最大値2をとる。 このとき, A, B の座標は (-1,2), (1,2) 放物線y=-x2+12とx軸で囲まれた図形に内接する長方形 □ 練習 239 ABCD の面積S の最大値を求めよ。 ただし, 2点A, B はx軸上にある ものとする。 第6章 微分法と積分法 ... 12 x 0 S' + 0 - 極大 S 32 2√3 増減 最大 よって, Sはx=2で最大値32をとる。 は Sが最大になるときの長方形の頂点の座標 (-2, 0), (2, 0), (2, 8), (-2, 8) BAS 240 1 右の図のように 点Aをとる。 △OAH において, 三平方の定理により AH=√OA2-OH =√32-x2 3 H 0+1=√√91x2 A よって V=AH2×2OH =π(9-x2) x2x =-2π(x3-9x) OHの長さは球の半径より小さいから,xのと りうる値の範囲は 0<x<3 ...... ① (2) V'=-2π(3x2-9)=-6z(x-3) =-6z(x+√3)(x-√3) ①の範囲において, V'=0 となるのは, x=√3 のときであり, Vの増減表は次のよう になる。 x 0 √3 V' + 0 極大 [V 12√3 ... 3 [1] ■ 練習 240 右の図のように, 点0を中心とする半 径3の球に直円柱が内接している。 この直円柱の 体積をVとするとき, 次の問いに答えよ。 (1)点0から直円柱の底面に引いた垂線 OH の長 さをxとするとき, Vをxの式で表せ。 3 また, xのとりうる値の範囲を求めよ。 (2)Vの最大値を求めよ。 H よって, Vはx=√3 で最大値12/3をとる 241 f'(x) =3x2-27a2=3(x+3a)(x-3) f'(x) =0 とすると x=±3a またf(0) = 0, f(3) =27-812 (1) 0<a<1であるから 0<3a<3 よって, f(x) の増減表は次のようになる。 x 0 f'(x) ... 3a 0 + 極小 f(x) 0 3 727-81a2 -54a3

解決済み 回答数: 1
数学 高校生

解答の95+12x>100+12(20-x) になるのがわかりません。95と100は重さで12xと12(20-x)は、球の数のはずなのに足すのはなぜですか?

59 1 ◎基本2 なるだろうか? (2) も同様。 AxB の形に A>0, A=0, で場合分け。 基本 例題 32 1次不等式と文章題 下 Aの箱の重さは95g,Bの箱の重さは100gである。 1個12gの球が20個あ り,これらをAとBに分けて入れたところ,Aの箱の方が重かった。そこで 基本30 Aの箱からBの箱に球を1個移したところ、今度はBの箱の方が重くなった。 最初,Aの箱には何個の球を入れたか。 CHART & SOLUTION 文章題の解法 ① 変数を適当に定め、関係式を作って解く ②解が問題の条件に適するかどうかを吟味 最初,Aの箱の球をx個としたときのAとBの重さを比較した関係式を作る。 次に,Aの箱の球を1個減らし、Bの箱の球を1個増やしたときの重さを比較した関係式を 作る。こうしてできる2つの不等式を連立させて解けばよい。 なお, xは自然数であることに注意する。 解答 となるためには,最大 とき 0 を代入して すべての実数x の範囲を定 Bは (20-x) 個 最初,Aの箱にx個の球を入れたとすると して0.x=0である A,Bの重さを比較して 95+12x > 100+12(20-x ) 05Aの方が重い。 245 整理して 24x>245 よって x> 24 正の数なので、 の向きはそのまま Aの箱から1個減らし, Bの箱に1個増やしたとき A,Bの重さを比較して 95+12(x-1) <100+12(21-x) ← Aは (x-1) 個, Bは(20-x+1) 個 ←Bの方が重い。 1章 1次不等式 整理して 24x<269 よって は負の数なので、 x<- 24② である 269 の向きは逆にな 245 ①と②の共通範囲を求めて 269 ·<x<· 24 24 245 24 ≒10.2, 269 24 ≒11.2 xは自然数であるから x=11 ◆解の吟味。 したがって,最初Aの箱に入れた球は11個である。 2 Ic

解決済み 回答数: 1