学年

教科

質問の種類

数学 高校生

ほんとに初歩的な質問です。高校1年。数学Iです。なぜこの問題で角Cが90度だということがわかるんですか? 私はわからず角Aを90度と置いてしまいました。角Aでも解けるんですか、?

0.63 基本 例題 66 最大・最小の文章題 (1) 117 BC=18, CA=6 である直角三角形ABC の斜辺 AB 上に点Dをとり,Dか ら辺BC, CA にそれぞれ垂線 DE, DF を下ろす。 △ADFとDBEの面積 の合計が最小となるときの線分 DE の長さと,そのときの面積を求めよ。 00000 基本 60 CHART & SOLUTION る。 文章題の解法 最大・最小を求めたい量を式で表しやすいように変数を選ぶ DE = x とすると, 相似な図形の性質からADF, △DBEはxの式で表される。 また、xのとりうる値の範囲を求めておくことも忘れずに。 3章 8 解答 DE=x とし, △ADFとDBEの 面積の合計をSとする。 0<x< 6 ...... ① 0<DE=FC<AC であるから A D F (辺の長さ)>0 B E C ← xのとりうる値の範囲。 AF=6-x △ABC∽△ADF であり, △ABC: △ADF=62: (6-x)2 △ABC=18・6=54 であるから △ADF= AADF=(6-x)2.54-(6-x)² 相似比がmin→ 面積比は2n2 三角形の面積は 1 (底辺)×(高さ) 2 よって ADBE= -.54=x² = 同様に,△ABC∽△DBE であり △ABC: △DBE=62:x2 x² 62 AS したがって, 面積は 549 S=△ADF+ △DBE -3-((6-x)²+x²) 27 2次関数の最大・最小と決定 別解 長方形 DECF の面積 をT とすると, Tが最大に なるときSは最小となる。 DF=3(6-x) から T=x3(6-x) =-3(x-3)2+27 0<x<6 から, x=3でT は最大値 27 をとる。 よって、 線分 DE の長さが 3のとき, Sは最小値 =3(x²-6x+18) =3(x-3)2+27 0 3 6 1・6・18-27=27 2 ①において, Sはx=3で最小値27 をとる。 をとる。 よって、線分 DE の長さが3のとき面積は最小値 27 をとる。 PRACTICE 663

解決済み 回答数: 1
数学 高校生

数Iの黄チャートの例題80の青の線を引いているところがなぜこの答えになるのかわかりません。解説よろしくお願いします🙇‍♀️

基本 例題 80 2次方程式の応用の 右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺 AB, AC上に AD=AE となるように2点D, E をとり, D, E から辺BC に 垂線を引き、その交点をそれぞれF, G とする。 D 00000 A E 基本 66 B F G 長方形 DFGE の面積が20cm² となるとき 辺FG の長さを求めよ。 CHART & SOLUTION 文章題の解法 ① 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=xとして, 長方形 DFGE の面積をxで表す。 そして、 面積の式を =20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が, xのとりうる値の条件を満たすかどうか 忘れずに確認する。 解答 3 9 01(S-1) (SA) #AE SA FG=x とすると, 0 <FG<BC であるから A 0<x< 20 ・① また, DF=BF=CG であるから D E 2DF=BC-FG # よって DF= 20-x 2 B F G C 3.0 - [0] 定義域 ∠B=∠C=45° であるか ら, BDF, ACEGも直 角二等辺三角形。 830 => [s] 20-x 長方形 DFGE の面積は DF •FG= x 2 20-x ゆえに x=20 2 整理すると これを解いて x2-20x+40=0 x=-(-10)(-10)2-1・40 =10±2√15 ← 係数が偶数 26′型 912 ここで, 02√158 から とき 解の吟味。 10-8<10-2/15 <20, 2<10+2/15<10+8 02√15=√60<√64=8 よって、この解はいずれも ①を満たす。 したがって FG=10±2/15 (cm) 単位をつけ忘れないよう に。 PRACTICE 802 その平方が、他の2数の和に等しい。 この3

解決済み 回答数: 1
数学 高校生

どうして矢印のところCなしの式に変形できるんですか、? 公式ですか?

求めよ。 基本 38 □ 40 確率の条件から未知数の決定 例題 基本の 13 00000 15本のくじの中に何本かの当たりくじが入っている。 この中から同時に2本引 とき 1本が当たり 1本がはずれる確率が 12 35 であるという。 当たりくじは 基本 38 は、確率がnの式で表されるから, 当たりくじの本数をnとして,まず, 確率を計算する。 ここで 12 35 とおいてnの方程式 同本あるか。 通り る」場合が より求める を解く。 なお, 文章題では, 解の検討が大切で,nのとりうる値の範 囲に注意が必要である。 この問題では, 1本が当たり 1本がは ずれる確率が0ではないから, 1≦x≦14であることに注意。 +£3 (1) 2 2章 ⑥事象と確率 誰が勝つか り 当たりくじの本数をnとすると, n は整数で ...... 三で勝つか 鞳答 亘り 事象の確率 る考え方。 15C2通り 当たり1本, はずれ1本を取り出す方法は nC1× 15-nC1 B C とす したがって, 条件から 1≤ n ≤14 また、はずれくじの本数は 15-nで表される。 15本から2本を取り出す方法は 0≦x≦15でもよいが、 n=0 (すべてはずれく じ), n=15 (すべて当た りくじ) の場合 1本が 当たり 1本がはずれと なることは起こらない。 よって, 1≦x≦14 とし ている。 ナが勝つのは nC1X15-nC1_12 = 15.14 15C2= ・=15・7 2-1 15C2 35 n(15-n) 12 (*) すなわち 15.7 35 分母を払って整理すると n2-15n+36=0 通り (6) 左辺を因数分解して (n-3)(n-12)=0 これを解いて n=3,12 または ①を満たすの値は n=3,12 よって当たりくじの本数は 3本または 12本 何人) 解の検討。 n=3,12は ともに①を満たす。 通り 2人を4人 考えて 4 (通り) 2! p.409 EX31 くじを引く順序を考える 当たりくじ本をa, Q2, an; はずれくじ 15-n本を by, by,…, is-n として, (1本目 2本目) (当たり, はずれ), (はずれ,当たり)のように引く順序を考えると,題 注意の確率は, 2×P1×15-mP1_n (15-n) 15.7 15P2 となり、解答の(*)の左辺と一致する。 この方針でもよいが、上のように組合せで考えると, 当たり はずれの順序を考える必要が まない分だけ計算しやすい。 袋の中に赤玉、白玉が合わせて8個入っている。 この袋から玉を2個同時に取り出 ~すとき、赤玉と白玉が1個ずつ出る確率が- であるという。 赤玉は何個あるか。 p.410 EX32、

解決済み 回答数: 1
数学 高校生

次の問題の青線のところで右と左がよく分からないのですが右の解説?のところを読んでも理解できないのですがどなたか解説お願い致します🙇‍♂️

例題 32 1次不等式の文章題 ★★ 何人かの子どもに果物を配る。 1人に4個ずつ配ると26個余るが, 1人に 9個ずつ配っていくと最後の子どもは果物はもらえるが他の子どもより少 なくなる。 子どもの人数と果物の個数を求めよ。 思考プロセス 未知のものを文字でおく Action》 文章題は, 未知のものをxとおいてその変域に注意せよ 子どもの人数, 果物の個数のどちらかをxとおく。 子どもの人数をxとおく → 果物の個数は4x +26 → x-26 果物の個数をxとおく → 子どもの人数は 4 子どもの人数をxとおいた方が, 簡潔に表すことができる。 解 子どもの人数をx人とおくと, 果物の個数は (4x+26) 個 である。 x は自然数である。 これより 9(x-1) <4x+26<9x 9(x-1) <4x +26 ① すなわち l4x+26<9x ①を解いて x < 7 ③ 26 ②を解いて x> (4) 5 26 ③④より <x<7 5 この不等式を満たす自然数x を求めると このとき, 果物の個数は x = 6 4x+26=4・6+26 = 50 1人に9個ずつ配ると最 後の子どもも果物をもら えるから 9(x-1) <4x+26 最後の子どもは他の子ど もより少ないから 4x+26<9x よって 9x-8≦4x+ 26 ≦ x - 1 としてもよい。 26 = 5.2 であるから, 5 5.2<x<7 を満たす自然 数x 6 したがって 子ども6人、 果物 50個

解決済み 回答数: 1
数学 高校生

(2)の問題についてです。 計算したあとのmの値が-2と3なのはわかるのですが、なぜ-1が出てくるのか分からないので教えて欲しいです

この (1)xの2次方 に、定数mの値の範囲を定 (2)xの方程式 (+1)x+2(m-1)x+2m-5=0がただ1つの実数料 つとき、定数mの値を求めよ。 CHART&SOLUTION 方程式が実数解をもつ条件 ののた (2次の係数) 0 ならば 判別式 Dの利用 (1)「2次方程式」が実数解をもつための条件は D≧0 2.10% MOITU (2)単に「方程式」 とあるから,+1=0 (1次方程式) の場合と m+1≠0 (27 の場合に分ける 2次方程式の判別式をDとするとの係数? (1) 2次方程式であるからm-2≠0 よって m=2 2次方程 基本 例題 80 右の図のように, BC=20d の三角形ABCがある。 辺 となるように2点D,Eを 垂線を引き、 その交点を 長方形 DFGE の面積が2 の長さを求めよ。 CHART & SOLUTIO 文章題の解法 ① 等しい関係の式で ②解が問題の条件に FG=x として, 長方形 DF xの2次方程式を解く。 最 忘れずに確認する。 ={-(m+1)}-(m-2)(m+3)=m+7 2次方程式が実数解をもつための条件は D≧0 であるから 26′型であるから、解答 D = b²² 4 =b2-ac を称 FG=x とすると,0<F m+7≥0 0<x<20 よって m≥-7 ゆえに -7≦m<2,2<m m≠2かつm≧ また, DF=BF = CG (2) [1] m+1=0 すなわち m = -1 のとき -4x-7=0 2DF=BC-FG -7 よって、ただ1つの実数解 x=- 7 をもつ。 よって DF= 20-x 2 4 m=-1 [2] m≠-1 のとき よって 方程式は2次方程式で, 判別式をDとすると 2次方程式がただ1つの実数解をもつための条件は D=lであるから これを解いて m=-2,3 -m²+m+6=0 (m+2)(m-3)=0 これらは mキー1 を満たす。 以上から、求めるの値は m=-2,-1, 3 E-S を代入 長方形 DFGE の面積は ←判別式が使えるのは 20-x ゆえに x= 22=(m-12-(m+1)(2m-5)=-m²+m+6 2次方程式のとき。 ← 2次方程式が重 つ場合である。 整理すると これを解いて x²- x= ここで, 02√158 10-8<10-2 よって、この解はい したがって FG=

解決済み 回答数: 1