学年

教科

質問の種類

数学 高校生

③の条件がよく分からないので教えてください🙇🏻‍♂️

【2】 kを実数の定数とするとき, 次の問いに答えなさい. (1) の2次方程式²-2(k-1)x-k+7= 0 が異なる2つの実数解をもつ. イウ これらの解がともに1より大きいときkの値の範囲は, ア I また, k= 《解答例》 (1) イウ であり, I 《 考え方 ≫ 2次方程式の解の配置 2次方程式 f(x)=0の解の配置をする際は, ① 放物線y=f(x) の軸の位置に関する条件 ② 2次方程式f(x)=0の判別式Dに関する条件 ③ f(x) の符号に関する条件 に着目するとよい. のとき, この方程式の解は= となる. (2) T が実数であるとき, 2次不等式 (k-2²-(k+1)x+k-2≦0が常に成立するような である. kの値の範囲は k ≤ 2022年度学校推薦選抜 (11月17日実施) 大問2 (一部省略) f(x) =x2-2(k-1)z-k+7 = とし, f(x)=0 の判別式を D とする. {x-(k-1)}2-(k-1)² -k + 7 D1 = (k-1)-(-k+7) =k-k-6 = (k+2)(k-3) x²-2 k-1> 1... ① D1 > 0 ... ② f (1) > 0 ….. ③ オ である. f(x) = 0 が異なる2つの実数解をもち,これらの解がともに1より大きいので, y = f(x) のグ ラフは次図のようになる (黒板またはホワイトボードを参照). よって求めるの条件は, 4 -2² ( 1302-1) ₁ - 12/10 + 3 3x²14c+11=0 ① よりk> 2...①', ② より (k + 2)(k-3)>0 k<-2または3<k...②', 10 ③より10-3k> 0 ∴k < 3 10 が得られ, よって求めるkの値の範囲は①' かつ ②' かつ ③', すなわち3<k< 10 またk= のとき, f(x)=0の解は, 3 <k< I- -+7=0 (-1)(3z-11)=0 ∴x=1. カキ ク 113 である. である. である.

解決済み 回答数: 1
数学 高校生

【√を含んだ方程式、不等式】に関する質問です。 問題の最初では前提として√の中が0以上であると書かれています。 そして(ア)の解説では【2x−x^2が0以上である】から【√の中が0以上である】ことが保証されると書いてあります。 2x−x^2は上に凸のグラフです。明らかに0... 続きを読む

(ア)√2x-x=1-2x を満たす実数xの値は [ (イ) √5-x<x+1を解け. (ウ) 不等式√x+1≧2x-1 を満たす』の範囲は 03 ルートがらみの方程式・不等式を解く一 .. ]である. ルートがらみの方程式・不等式のことを, 無理方程式 無理不等 図形問題を解くときにも現れる 式と言う。 教科書的には数Ⅲの内容だが, 図形問題を解くときにも (解法によっては) 現れることがあ るので,ここで練習しておくことにしよう. 解くときの注意点 2乗してルートを解消するが,その際に注意が必要である. である. ・2乗すると同値性がくずれる. 例えば, A=B⇒A'=B' であるが, A'=B' # A=Bである A'ZBであ A2≧B」という同値変形ができるの 解答量 (7) √2x-r² =1-2x ⇒1-2x²0 ƒ› 2x−x²=(1−2x)² ①を整理すると, 5x²-6x+1=0 :: (r−1)(5r-1)=0 -1<x≦5 かつ (x+4) (x-1) > 0 (ウ) √x+1≧2x-1 ① のとき, x+1≧0 1°②かつ 2ェー1<0, つまり -1≦x<1/12 のとき (例えば,A=-2,B=2のとき, A2=B2 だが,A = B ではない).また, A≧B る(例えば,A=1, B=-2のときを考えよ)『A≧B は,A≧0かつ B≧0のときである. 両辺が0以上なら, 2乗しても同値である. ・ルートの中は0以上であり, の値は0以上である。 実際にどのようにするかは,以下の解答で. 1-2≧0 を満たすxを求めて, x=- (1) √5-x<x+1 ⇒ 5¬x≥0h»x+1>0 A»5−x<(x+1)² ... -1<x≦5 かつ x2+3x-4>0 (京都産大・理系) (龍谷大・理系(推薦)) (東洋大) ∴.1<x≦5 x≧-1 は成り立つ。 5 よってStea であり.xml/1/2とから、1/12ss20 5 4 1°,2°により, 答えは、-1≦xs 20 5 2°②かつ2x-1≧0, つまりx≧ x≧1/2のとき,① の両辺を2乗しても同値で, x+1≧(2x-1)2 .. 4x²-5x≤0 : x(4x-5) ≤0 ← ① のとき,右辺≧0 により 2x-2≧0であるから, ルートの 中は0以上であることが保証さ れる. x+1>√5-x≧0 により, x+1>0. ←-1<x≦5のとき,x+4>0 ← ①の右辺の符号で場合分け. ② のとき, ①の右辺 < 0 なら ① は成 立。

解決済み 回答数: 2
数学 高校生

(ィ)のマーカーの部分どうしてそう言えるんですか?√の中は絶対正と決まっているってことですか?(ア)も黄色の条件が無いと解けないんですか??分からないですこんがらがらがら

2ェー31-2.z を満たす実数zの値は である。 (ア) (京都産大·理系) (龍谷大·理系(推薦) ●3 ルートがらみの方程式· (東京都市大) (イ)/5-ェ<e+1 を解け。 (ウ)不等式/3-2.z 22.z-1 を解け。 図形問題を解くときにも現れる るので, ここで練習しておくことにしよう。 解くときの注意点 2乗してルートを解消するが,その際に注意が必要である。 は,A20かつ B20のときである. 両辺が0以上なら,2乗しても同値である。 * ルートの中は0以上であり,V 実際にどのようにするかは, 以下の解答で、 の値は0以上である。 解答 (ア)/2.ェ- =1-2.z → 2.c-z?=(1-2.z)? ..…① かつ1-2.c20 のを整理すると, 5.z?-6.z+1=0 全ののとき,右辺20により 2ェー20 であるから, ルートに 中は0以上であることが保証- :(r-1)(5c-1)=0 1 れる。 1-2.z20を満たすェを求めて, x= 5 合ォ+1>/5-z 20により, エ+1>0. (イ)V5-r<+1 → 5-z20かつ ェ+1>0かつ5-x<(c+1)? -1<zS5 かつ +3x-4>0 -1<r<5 かつ(z+4)(x-1)>0 1<x<5 コ-1<ェS5のとき,z+4>0 3 (ウ)/3-2.r 22.z-1………0 のとき,3-2z20 1° 2かつ 2.ェ-1<0, つまりェ<ーのとき, ①は成り立つ。 全のの右辺の符号で場合分け のとき ののち迎/oか

解決済み 回答数: 1