学年

教科

質問の種類

数学 高校生

408番です。(1)の増減表がこうなる理由が分かりません。

⇒ Challenge 406 a,bを実数として, について 次式f(x)=3x-4x-6ax2+12ax+b 考える。 f(x)=0 が実数の重解を2つもつときのα, b の値を求めよ。また,そ のときの2つの重解を求めよ。 ただし, a>0, a≠1 とする。 〔類 05 立命館大〕 -1907 407 放物線 C:y=x2 上の点Pに対し,PにおけるCの法線をL(P) とする。 (LP) は,Pを通り,PでのCの接線に直交する直線である。) 点Q(a, 1) に対し, L (P) がQを通るようなC上の点Pがちょうど3個あるため のαの範囲を求めよ。 [13 学習院大〕 Training 403 *408 x≧0 のとき不等式2x°≧a(x 2-3) が成り立つような実数aのとりうる 値の範囲を求めよ。 [12 中部大〕 Training 405 〒409 (1) 曲線 y=x-x2の接線で,点(20) を通るものをすべて求めよ。 (2) pを定数とする。xの3次方程式ペーxp(x-2)の異なる実数解の個 数を求めよ。 〔類 11 名古屋大〕 + Plus One 4100≦02 とする。 (1) sin-√3cOsO≧-1 を満たす0の値の範囲を求めよ。 (2)(1) で求めた範囲の日について, 4cos'0+3√3 cos20 の最大値と最小値を求 めよ。 また、そのときのの値を求めよ。 (3) は実数の定数とする。 4cos'+3√3 cos'o=kかつ sino-√3cos-1を満たす0が,ちょうど3個存在するような,の値 の範囲を求めよ。 [ 12 法政大 〕 35 微分法の応用 73

未解決 回答数: 1
数学 高校生

4step 数3 グラフの端を求めるとき、YではなくYダッシュの極限を求めるのはなぜなのか教えていただきたいです。 よろしくお願いします。

概形をかけ。 =x≤2n) を求めよ STEP <B> け。 y=x+ _y=ez y= - 次の関数の極値を求めよ。 x-7 () 4 1 x2+1 (8) y=-x2 y=2 cosx-cos²x (0≤x≤2π) (2) f(x)=x²-2x²+1 *(4) f(x)=x+2sinx (0≦x≦2) y=2x+√x²-1 √y=x+√1=x² y=ecosx (0≤x≤2n) であることを示せ。 また, f(x) 第6章 微分法の応用 (3) この関数の定義域は, 1-220から -1≤x≤1 1<x<1のとき y'=1+ また -2x 2√1-x² y' 1 (1-x²)√/1-x² y"=-- y'=0とすると √1-x² = x 両辺を2乗して 2x2=1 ①よりx≧0であるから の増減とグラフの凹凸は、次の表のようになる。 -1 y -1 + √√2 lim y'= lim (1 1-0 11-0 1 √√2 0 limy'= lim 1+0 3-1+0 1<x<1のとき √1-x2 ズニー *** N 1- x 1 1 X x2 ① X /1-² 18 よって、 グラフの概形は[図] のようになる。 (4) この関数の定義域は, 1-x≧0 から -1≤x≤1 関数yは奇関数であるから、クラ して対称である。 また lim y'=-co, limy 111+0 よって, グラフの概形は[図のより (3) √√√2, -1 y1 2 √√2 11 01 √2 14 参考 (3) (4) のように、 xが定義域の ときのy'の極限を調べることによって の端に近づくとき曲線の接線の傾き な値に近づくか(または無限大に発 調べることができる。 (5) この関数の定義域は x≠0 y' = − 1 x² +e y'=0 とすると -20 0<x<2π yの増減 x y 2 "----- + ---- er X3 2x+1 + y

回答募集中 回答数: 0