学年

教科

質問の種類

数学 高校生

コとサがそれぞれ4番、8番になるのですがなぜですか?

ある工場で作られた牛乳の容量は 1000 mL と表示されている。この牛乳 4本を無作為に抽出し牛乳の容量を計 測したところ。 平均は1001.6mL, 標準偏差は 10.0mL であった。 この調査結果から牛乳の容量は表示通りではない と判断できるか、有意水準 5% で両側検定を以下のように行った。空欄に当てはまる最も適切なものを答えよ。 1234 100.6-1000 ただし、ア と ウに同じ語句を書いた場合はどちらも不正解とする。 また、空欄 は下の選択肢から選 3あ び、番号で答えよ。 正規分布工(値) z= オ (値)※値を求める途中の式でも可 力(X を含む式) とおくと,Zは標準正規分布 N(0, 1) に従うと見なせる。 両側検定を行うから,キ(Xを含む方程式または不等式) P(12123.2)=2(as-u(3,2)=0.00138 この工場で作られた牛乳の容量の平均をm(mL)とし、 (mの式) ウ(漢字二字) ア(漢字二字) 仮説を 400は十分大きいので、イのもとでの標本の大きさ 400 の標本平均は、 仮説を≠1000 とする. 文-1000 に近似的に従うから、10 de 2-10 2x-2000 となる確率p を求めると、 P => ク(値) となり,p (記号) 0.05 が成り立つので,ア 仮説は A 1 2003,2-2000 =32 よって、この標本調査の結果から, 牛乳の容量は B 次に、この問題を以下のように棄却域を考えることによって検定することもできる。 両側検定における有意水準 5% の棄却域は, P コ 0.95 であることを利用して, サ と表せる. 3.2 X=1001.6 のとき,Z= シ(値) となり、この値は棄却域に ス から,ア 仮説はA よって、この標本調査の結果から牛乳の容量はB コ サ の選択肢(同じものを繰り返し選んだ場合は両方とも不正解とする) 1 Z ≤ 1.64 2 Z ≤1.96 3|Z 1.64 4 Z ≤ 1.96 5 Z ≧ 1.64 6 Z≥1.96 7 || 1.64 8 |Z≥ 1.96

回答募集中 回答数: 0
数学 高校生

うすくまるでかこっているところが問題によって下記かがちがくてよくわかりません。教えてください。

なったと判断できる。 28 この地域のイノシシが寄生虫Aに感染している割 よって、 区間の幅が狭いのは、信頼度95%の信頼 区間である。 合を シシの感染個体の比率は 198 396 対立仮説は すると、帰無仮説は0.55, 0.55 である。 また、 今回の調査で捕獲したイノ = 0.5 である。 1 (2) (1)より, 信頼区間の両端は 0.04 12.56 1.96 =12.56±0.01568 √25 □2 帰無仮説が正しいとすると, 標本における感染個体 0.55.0.45 の比率がの分布は正規分布 N (0.55, と 396 見なせる。 よって P(-0.55 ≥ 0.5-0.551) よって, 信頼度 95%の信頼区間は 12.54432 d≦12.57568 小数第3位を四捨五入すると, 12.54mm以上 12.58mm 以下となる。 (3) 信頼区間の幅を0.008mm以下にするから,計 測回数をnとすると, (1) より 0.55 0.05 =PI 0.55.0.45 0.55-0.45 V 396 396 =P(Z|≧2) =2P(Z≧2) =0.04550 <0.05 したがって, = 0.55 という帰無仮説は棄却される。 すなわち、この地域のイノシシが寄生虫 Aに感染し ている割合は先行調査と異なると判断できる。 Let's Challenge 2 1_(1) 標本平均の平均は母平均に等しいから E(X) = 400 標本の大きさが36であるから, 標本平均の標準 偏差は 70 0.04 2.1.96. 0.008 よって n≧384.16 ゆえに、少なくとも385回計測すればよい。 布は,正規分布 N (0, と見せる。 3 (1) 帰無仮説は m = 0, 対立仮説は m≠0 である。 (2) 帰無仮説が正しいとすると, 標本における重さ の平均から表示されている値を引いた値m' の分 2.52 225 よって P(m′-01≧ 0.32) P ( \m\ 0.32 2.5 2.5 225 SHP225 =P(Z≧1.92) =2P(Z≧1.92) 0.05486>0.05 したがって, m = 0 という帰無仮説は棄却されな いにで (1)

回答募集中 回答数: 0