学年

教科

質問の種類

数学 高校生

例題74.2 恒等式という記述がないですがこれでも問題ないですよね? (3枚目を確認してほしいです。2枚目はそこまでの導入も一応載せただけであり、おそらく記述に問題はありません。)

よ。 本 65 基本例 74 第2次導関数と等式 1) y = log(1+cosx) のとき,等式 y"+2eY =0 を証明せよ。 131 00000 自 (2)y=exsinx に対して, y”=ay+by' となるような実数の定数a,bの値を求 めよ。 [(1) 信州大, (2) 駒澤大]基本 73 指針第2次関数y”を求めるには、まず導関数を求める。また,(1),(2)の等式はとも にの恒等式である。 (1)y" を求めて証明したい式の左辺に代入する。 またe-xで表すには,等式 elogppを利用する。 (2)y', y” を求めて与式に代入し, 数値代入法を用いる。 なお, 係数比較法を利用す → ることもできる。 ・解答編 p.94 の検討 参照。 (1)y=2log(1+cosx) であるから 2sinx 1+cosx <logM = klogM なお, -1≦cosx≦1と (真数) > 0 から _ 2{cosx(1+cosx)=sinx(-sinx)} | 1+cosx>0 解答 y' =2• (1+cosx) こでは 1+cosx よって y"=- しょう x2+3), -12x)' x)', in 2x) (1+cosx) 2(1+cosx) _ _ _ 2 ( Nhật (1+cosx) [ == 1+cosx また, Y = log(1+cosx) であるからex=1+cosx 2 ゆえに 2e2 2 2 = y 1+cosx よって y"+2e-1/2=- 2 2 + =0 1+cosx 1+cosx x+cos2x=1 elogp=pを利用すると elog(1+cosx)=1+cosx 3章 1 高次導関数、関数のいろいろな表し方と導関数 ga), gay anx cos2y g(x)をxで ・もの。 v' (2) y=2e² sinx+ex cos x=e²x (2 sinx+cosx) y=2e(2sinx+cosx)+e (2cosx−sinx) =e2x(3sinx+4cosx) ...... ① ゆえにay+by=aesinx+be2x(2sinx+cosx) =e2x{(a+26)sinx+bcosx} y" =ay+by' に ① ② を代入して 2x (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} 4=b ③はxの恒等式であるから, x=0を代入して π を代入して また,x=2 これを解いて このとき って 3e"=e" (a+26) a=-5,6=4 (③の右辺) 4(e2)(2sinx+cosx) +ex(2sinx+cosx) 参考 (2) のy"=ay+by' のように、未知の関数の 導関数を含む等式を微分 方程式という(詳しくは p.353 参照)。 ③が恒等式 ③に x=0, を代入しても 成り立つ。 =e2x{(-5+2.4)sinx+4cosx)=(③の左辺) 逆の確認。 a=-5,b=4 [S][]

解決済み 回答数: 1
数学 高校生

aの場合分けがどうしてa>0とa<0で分けてるのか分かりません。a=0とa≠0にしてしまいました。( ඉ-ඉ )

問題 (5) から limxlogx=0 limyの値に関係なく最 x→+0 よって 0+1x _0+1x PR 関数 f(x)=- asinx ③80 limy=lim(xlogx-2x)=0 cosx+2 (0≦x≦)の最大値が3となるように定数αの値を定めよ。 〔信州大] x+0 大値はない。 AA f(x)= a{cosx(cosx+2)-sinx(-sinx)} (cosx+2)2 (4)-19-19 g" α(2cosx+1) (cosx+2)2 [1] = のとき 常に f(x) = 0 であるから, 最大値が3にならない。 よって、不適。 [2] α>0 のとき f'(x)=0 とすると -1/2 0<x<πであるから COS x=- x= PRO≦x≦における f(x) の 2 3 -π 増減表は右のようになり、 2 x 0 23 π 3 x= πで極大かつ最大と f'(x) + 1- 0 f(x) 0 極大 0 なる。 ゆえに,最大値は √3 √3 ƒ(337) = よって3a=13 2 -a 1+2 = > 3 -a 3 (\ 1-8=xS Aq $8 したがって a=3 これは α>0を満たす。 条件を確認する。 [3] a < 0 のとき x21= (1) 0≦x≦ における f(x) の 0 ... x 増減表は右のようになる。 23 -π π ゆえに,最大値は f'(x) - 0 + f(0)= f(x)=0 f(x) 0 ✓ 極小 > 00 よって、不適。 [1] [2] [3] から a=3 最大になりうるのは x=0 または x=πのと >き。 (1) PR 81 AB=AC=1 である二等辺三角形ABCに内接する円の面積を最大にする底辺の長さを求めよ。 も計算しやすい。 [類 東京理科大] 4章 PR

解決済み 回答数: 1
数学 高校生

(ア)で合成をしないのは、 √5が出てきてもありがたいことがないからですか? √5になる角度なんて求めるのしんどいからですか?

●11 三角方程式・不等式 (ア) 2cos-sin0=1であるとき, cose, sin 0 の組を求めよ. (兵庫医療大・リハビリ, 改題) (イ) のとき, sin≧cos0 をみたすの範囲は [ である. 0 √√6 (ウ) 0°6<180° のとき, 2cos2 +sin 0- -1≧0 を解け. 2 2 (エ) sin0+ sin20+ sin30>0を0≦0<2の範囲で解け. (芝浦工大) (福岡大,商) (信州大・繊維) cos'0+sin20=1の利用 この基本関係式を用いて, cose と sin0の入った式を cose か sin0のど ちらか一方だけの式にそろえるのが基本の手法である. 単位円を利用 三角関数の方程式・不等式を解く際 にも単位円を活用しよう. 図 1 YA 図 2 12 点P (cose, sin0) は図1のような点を表す. よって 例えば「0≦02 のとき, sin≧1/2を解け」なら, P は図2の太線部にある (sin0はPのy座標だから, y1/2の範囲にある)ことから,T/6≦05/6 となる. また,次の前文 (1番目と2番目) も参照. 0 O 48 +56 12 y=1/ QA 6 HY 角をそろえる (ウ) のように 0/2 と 0 が混在するときは, 0にそろえよう。 合成の活用 例えば sin+cose は変数が2か所にあるが,合成すると1か所になる効果がある。 積の形に直す 多項式の方程式・不等式を解く際の基本は因数分解である. 三角方程式・不等式を 解くときも同様に,積>0 などの形にしよう. (エ)では,2倍角 3倍角の公式を利用すればよい。

解決済み 回答数: 2
数学 高校生

オレンジマーカーの部分がわからないです。教えてください🙇

基本題 29 漸化式と極限 (4)・・・ 連立形 00000 P1(1, 1), Xn+1= 1 4 4 -xn+ yn, yn+1= 5 3 4 5 =2xn+1/yn (n=1,2)を満たす平 面上の点列 Pn(xn, yn) がある。 点列 P1, P2, くことを証明せよ。 はある定点に限りなく近づ 指針 点列 P1, P2, 解答 [類 信州大〕 p.36 まとめ, 基本 26 がある定点に限りなく近づくことを示すには, lim xn, limy がど もに収束することをいえばよい。 そのためには,2つの数列{x}, {yn} の漸化式から, Xn, yn を求める。 ここでは,まず,2つの漸化式の和をとってみるとよい。 (一般項を求める一般的な方法については、解答の後の注意 のようになる。) Xa+1 = 1/4 x + 1/13/ -xn+ ①+②から P1(11) から x+y=2 3 xn+ yn (2) x=1,y=1 5 Yn ①, yn+1= Xn+1+yn+1=xn+yn よってxn+yn=Xn-1+yn-1=......=x+y=2 ゆえに yn=2-Xn 11 8 1 これを① に代入して整理すると Xn+1=- xn+ xn+1=- 20 5 32 11 32 特性方程式 変形すると Xn+1 Xn 31 20 31 11 8 Q=- a+ の解は 20 5 32 1 また X1- == 31 1+0=6 32 31 a= 31 32 32 ゆえに xn- 31 1 数列 xn- 20 31 32 1 よって limxn=lim 7118 31 31 また n→∞ n→∞ limyn=lim(2-x)=2- 2)=32 11 \n-1 31' 20 11. A-10 11 公比 の等 20 31 比数列。 32 30 31 31 y=2x から。 したがって, 点列 P1, P2, 32 30 ***** 31 31 は定点 (2220) に限りなく近づく。 注意 一般に,x=a, yi=b, xn=pxn+gyn, yn+1=rxn+syn (pqrs≠0) で定められる数列 {x},{yn} の一般項を求めるには,次の方法がある。 方法1 X+1+αyn+1=β(x+αyn) として α,βの値を定め、等比数列{x,+yn} を利 用する。 方法2 yn を消去して, 数列{x} の隣接3項間の漸化式に帰着させる。 すなわち, 1 xn+1=pxn+qyn から yn=Xn+1 P -Xn よって yn+1= Xn+21 Xn+1 q q q これらを yn+1=rxn+syn に代入する。

解決済み 回答数: 1
数学 高校生

最後の青い()のところで、右に書いてある感じで、係数を比較して答えを出すのは減点されますか? x=0とかπ/2とかを代入して計算するやり方でないとだめですか?

基本 例題 156 第2次導関数と等式 (1) y=log(1+cosx) のとき, 等式 y"+2e-1=0 を証明せよ。 |(2) y=ezsinxに 267 00000 に対して,y"=ay+by' となるような定数a,bの値を求めよ。 [(1) 信州大, (2) 駒澤大] 基本 155 指針第2次導関数y” を求めるには,まず導関数y' を求める。 また, 1), (2) の等式はともに 解答 x の恒等式である。 (1) y” を求めて証明したい式の左辺に代入する。 また,er をxで表すには, 等式 elog = pを利用する。 (2) y, y” を求めて与式に代入し、 数値代入法を用いる。 y=2log(1+cosx) であるから (1+cosx). 2sinx y'=2. 1+cosx よって y"=- 1+cost 2{cosx(1+cosx)−sinx(−sinx)} (1+cosxnia 2(1+cosx) (1+cosx) 2 1+cosx ex=1+cosx また, // = log(1+cosx) であるから 2 log M = klogM なお, -1≦cosx≦1と (真数) > 0 から 1+cosx>0 sinx+cos2x=1 [0] elogp=pを利用すると elog(1+cosx)=1+cosx 5章 22 2 高次導関数関数のいろいろな表し方と導関数 ゆえに よって 2e-= 2 2 y 1+cosx e2 y"+2e-=-- 2 + 2=0 1+cosx 1+cosx (2) y=2e*sinx+ecosx=ex(2sinx+cosx) y=2e2(2sinx+cosx)+e(2cosx−sinx) =e2x(3sinx+4cosx) ゆえに ...... ay+by'=aesinx+be2x(2sinx+cosx) =e2x{(a+26)sinx+bcosx} y=ay+by' に ①,②を代入して中 e2x \(e2*)(2sinx+cosx) 1 | +e(2sinx+cosx) (S (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} ... ③ ③はxの恒等式であるから, x=0 を代入して 4=b 参考 (2) y=ay+by' の ように、未知の関数の導関数 を含む等式を微分方程式と いう(詳しくは p.473 参照)。 ③が恒等式⇒③にx=0, また,x=を代入して 3e=e" (a+26) これを解いて a=-5,6=4 このとき 2 を代入しても成り立つ。 (③の右辺)=ex{(-5+2・4)sinx+4cosx}=(③の左辺) 逆の確認。 したがって a=-5, 6=4 係数を比較して、 a+26=3. よって 4:6. a:-5. (1)y=log(x+√x+1)のとき,等式(x+10y+xy=0 を証明せよ。 156 (2)yee yayby=0を満たすとぎ 定数a,bの値を求めよ。 [(1) 首都大東京, (2) 大阪工大] p.275 EX131~133 airy.

解決済み 回答数: 2