学年

教科

質問の種類

数学 高校生

なぜ第1象限で接したとき最大なのですか?

x, 2 領域と分数式の最大・最小 yが2つの不等式 x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, |最大値と最小値, およびそのときの x, yの値を求めよ。 y-2 y-2 x+1 の ・基本 122 連立不等式の表す領域Aを図示し, 指針 x+1 =kとおいたグラフが領域 Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy-2=k(x+1) を通り,傾きがんの直線を表すから、傾きんのとりうる値の範囲を考えればよい。 (1,2) CHART 分数式 y-b 最大 最小 y-b x-a =kとおき, 直線として扱う x-a x-2y+1=0 ①, x2-6x+2y+3= 0 2 YA 解答とする。連立方程式①,②を解くと P (x,y)=(1,1) (4,212) 5 ② -=kとおくと ゆえに、連立不等式x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 Aは図の斜線部分である。 ただし, 境界線を含む。 y-2 3 (3 2 2 y-2=k(x+1) (3) RY x+1 すなわち y=kx+k+2 ③は,点P(-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき この値は最大となる。 ② ③からyを消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると D 4 =(k-3)2-1 (2k+7)=k-8k+2 直線 ③が放物線 ②に接するための条件はD=0であるか ら, k2-8k+2=0 より k=4±√14 第1象限で接するときのkの値は k=4-√14 このとき、接点の座標は (√14-1, 4√14-12) k(x+1)-(y-2 = 0, x=-1, y=2のときん についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 k=4+√14 のときは, 第3象限で接する接線と なる。 次に,図から直線 ③が点 (1, 1) を通るとき,kの値は最 小となる。このとき k= 1-2 = -1/ Ak= y-2 ソニに代入。 1+1 よって 2 x=√14-1, y=4√14-12 のとき最大値 4-√14; x = 1, y=1のとき最小値- x+1 0r2+4x-y+2≦0 を満たすとき の最大値 x-2 201 3章 1 不等式の表す領域

解決済み 回答数: 1
数学 高校生

数学の問題です。110で最小値を求めるのに直線と点の距離の関係の公式を右のノートで使っているのですが何故か答えがあいません。答えは1/2で私は-5/4だと思いますなぜですか?

x-y 0から 求める a, b の条件は,①,② から, [b≦a+5 b 62-2a-1 b≥a+5 または と と同値である。 b≤-2a-1 よって、 求める領域は図の斜線部 分。 ただし、境界線を含む。 -5 -2_1 [inf. F f(x, y) =ax-y+b として, f(-1, 5)f(2,-1)≦0 と考えることもできる。 3章 14,67 PR ・607 M 4週間でのAの生産台数をx, Bの生産 台数をyとすると,条件から 組立 18 A 6 時間 2時間 x0,y≧0, B 3 時間 5時間 6x+3y≦18・4, 2x+5y ≦10・4 すなわち x = 0, y≧0, 2x+y≦24, 2x+5y≦40 離は この連立不等式の表す領域は右の図 の斜線部分である。 ただし, 境界線 を含む。 合計生産台数をkとすると YA PR ある工場で2種類の製品 A, B, 2人の職人MWによって生産されている。 製品Aについて ③109 は 1台当たり組立作業に6時間,調整作業に2時間が必要である。 また, 製品Bについては, 組立作業に3時間,調整作業に5時間が必要である。いずれの作業も日をまたいで継続するこ とができる。 職人Mは組立作業のみに, 職人Wは調整作業のみに従事し,かつ, これらの作業に かける時間は職人Mが1週間に18時間以内, 職人W が 1 週間に 10 時間以内と制限されている。 4週間での製品 A,Bの合計生産台数を最大にしたい。 その合計生産台数を求めよ。 W [岩手大] infx, y がいくつか の1次不等式を満たすと xyのある1次式の 値を最大または最小にす る問題を線形計画法の間 題といい, 経済の問題で も利用される。 最大16:07 (2)(46) b=6 6=-20 + 調整 -644 半径 6= 1-2151 い 2 2 k=x+y y=-x+k (10,4) これは傾きが-1, y切片がんの直線 を表す図から, 直線 ①が点 (10,4) を通るとき,kの値は最大になり k=10+4=14 O 12 ←直線①の傾きが-1 から,領域の境界線の傾 きについて 5 6 =kta -2<-1<-2 したがって,合計生産台数は最大14台である。 ← A10台 B 4台 ←14.51 16=9-4=21 PR 座標平面上の点P(x, y) が 3y≦x +11, x+y-5≧0,y≧3x-7 の範囲を動くとき, @110 x+y2-4y の最大値と最小値を求めよ。 与えられた連立不等式の表す領域 Dは, 3点A(1, 4), B(3,2), C(4,5) を頂点とする三角形の周 [類 北海道薬大] 境界線の交点 A, B, C C の座標はそれぞれ次の 連立方程式を解くと得ら れる。

解決済み 回答数: 1
数学 高校生

領域Aの4点はどのようにして分かるのか 教えて欲しいです🙇‍♀️

| 118 第3章 D 領域と最大・最小 目標 領域を用いて最大・最小が求められるようになろう。 応用 例題 7 考え方 . (p.119 練習 x, yが4つの不等式 x2,y20, 2x+y=8, 2x+3y12 同時に満たすとき, x+yの最大値、最小値を求めよ。 4つの不等式を同時に満たす点(x, y) 全体の集合は,これらを させた連立不等式の表す領域である。 x+yの値をkとおき、各んの値について, x+y=kを満たす点 (x,y)が領域内に存在するかどうか調べればよい。 43 直線 x+y=k が領域と共有点をもつようなんの値の範囲を調べる。 与えられた連立不等式の表す領域 深める 目標 練習 42 練習 43 E 目標 解答 Link 考察 をAとする。 領域Aは4点 (0, 0), (4, 0), (3, 2), (0, 4) を頂点とする四角形の周および内 5 ①4 部である。 (3,2) A x+y=k ...... ① k 6 15 とおくと, y=-x+k であり, 4\5 X これは傾きが -1,y切片がんで ある直線を表す。この直線 ①が領域 A と共有点をもつときのk の値の最大値、最小値を求めればよい。 領域Aにおいては,直線①が 20 点 (3,2)を通るときは最大で,そのとき 点 (0, 0) を通るときは最小で,そのとき k=5 k=0 である。 したがって, x+yは x=3, y=2のとき最大値5をとり、 x = 0, y=0 のとき最小値0をとる。 【?】 x,yが応用例題7と同じ4つの不等式を同時に満たすとき,5x+y が最大値をとるようなx, y の値を求めてみよう。 の

解決済み 回答数: 1