学年

教科

質問の種類

数学 高校生

(3)みたいに、 一般解が一つだけの時ってどうやって、一般解は一つだなと判断できるんですか? 一般解をもし、2つかいたら減点ですか? 2nπでなくnπなのはなぜですか?

32 基本 例題 142 三角方程式の解法 基本 00000 002 のとき, 次の方程式を解け。 また, その一般解を求めよ。 1 (1) sin0= √3 (2) cos 0=- 2 (3) tan 0=-√3 p.23 基本事項 指針 三角方程式 sin0=s, cos0=c, tan0=tは,単位円を利用して解く。 ① 0 を図示する。 次のような直線と単位円の図をかく。 ****** sin0=sなら, 直線 y=sと単位円の交点P, Q cos0 = c なら、直線x=cと単位円の交点P Q tan0=t なら、直線y=t と直線x=1の交点T (OT と単位円の交点がP,Q) として、点P,Q,Tの位置をつかむ。 ② ∠POx, ∠QOxの大きさを求める。 なお,一般解とは 0 の範囲に制限がないときの解で,普通は整数n (1)直線y=-1/23 と単位円の交点を P,Q とすると,求める 0 は,動径 OP, OQ の表す角である。 を用いて答える。 A 解答 7 0≦02πでは 0= 11 6 -1 π P 一般解は 0= 0 = 17——π+2 11 11 2n +2n (n は整数) (2) 直線x= √3 2 と単位円の交点をP,Q とすると,求める 0 は,動径 OP, OQ の表す角である。 (*) = //+2 116 11 0≦02πでは π と表してもよい。 6'6 1 T T 6. P√√3 2 O /1x ( π 11 一般解は 0= +2nn, (n は整数) (3)直線x=1上でy=-√3 となる点をTとする。 直線 OT と単位円の交点をP, Q とすると, 求める 0 は, 動径 OP, OQの表す角である。 200 <Oniay 2 P 3 2 5 002では 0= 3 π, 3 T 2 一般解は 0= (整数)も含まれる。 -1 50 3 -1 Q -3 \T(1-3)

解決済み 回答数: 1
数学 高校生

(2)の解き方が分かりません😭教えてください

a の値の範 基本145 , 与式は 1つの解をも 着目 239 重要 例題 149 三角方程式の解の個数 aは定数とする。 10 に関する方程式 sin' d-cos0+a=0について,次の問いに 答えよ。 ただし, 0≦02 とする。 この方程式が解をもつためのαの条件を求めよ。 (2)この方程式の解の個数をαの値の範囲によって調べよ。 COS0=xとおいて, 方程式を整理すると 指針 x2+x-1-a=0(-1≦x≦1) 前ページと同じように考えてもよいが,処理が煩雑に感じられる。そこで, 02 重要 148 ①定数αの入った方程式 f(x) =αの形に直してから処理に従い,定数a を右辺に移項したx2+x-1=αの形で扱うと, 関数 y=x'+x-1 (-1≦x≦1) のグラ フと直線y=αの共有点の問題に帰着できる。 ← → 直線 y=a を平行移動して,グラフとの共有点を調べる。 なお (2) では x=-1,1であるxに対して0はそれぞれ1個, 1 <x<1であるxに対して0は 2個あることに注意する。 cos0=x とおくと,0≦0<2から この解法の特長は, 放物線を 固定して, 考えることができ るところにある。 =0をαにつ ると (x-2) 切線 y=x2 と 4 4章 2 三角関数の応用 -2) の共有 S 範囲にある 解答 方程式は (1-x2)-x+α=0 もよい。 解 参照。 したがって x2+x-1=a cost f(x)=x'+x-1とすると f(x) = (x+1/12/27 5 グラフをかくため基本形に。 4 (1)求める条件は,-1≦x≦1の範囲で、y=f(x) のグラフと直線 y=aが共有点をもつ条件と同じ y=f(x) ' 5 y=a 1 である。 よって, 右の図から ≦a≦1 [6]- + [5]- ' 1 X 1 (2) y=f(x) のグラフと直線 y=αの共有点を考え 2 x て 求める解の個数は次のようになる。 [4]- [1] a <! 1 <αのとき 5 4' 共有点はないから 0個 [3]- 5 [2] 1 T 練習 149 [2] a=- 5 のとき,x=-1/2から2個 4 12/23から2個 さ to se XA [6]- 5 [3] <a<1のとき [5]~ 0 [4] - π 12 [日 [2] [3] [4]- -1 はそれぞれ1個ずつあるから 2 4個 -1<x</12/12<x<0の範囲に共有点 [4] α=1のとき、x=-1, 0 から 3個 [5] -1 <a<1のとき, 0<x<1の範囲に共有点は1個あるから 2個 [6] a=1のとき,x=1から1個 108 OP 10に関する方程式 cosine-α-1=0の解の個数を, 定数αの値の範囲に

解決済み 回答数: 1
数学 高校生

(1)は二次関数のグラフで(2)が三角関数のグラフなのはなぜですか?

0000 a の値の範 例題 重要 例 149 三角方程式の解の個数 は定数とする。 0 に関する方程式 sin0-cos0+a=0 について, 次の問いに 答えよ。 ただし, 002 とする。 (2) この方程式の解の個数をαの値の範囲によって調べよ。 (1) この方程式が解をもつためのαの条件を求めよ。 与式は つの解をも 20をαにつ x-2) 泉 y=xと 2)の共有 囲にある x²+x-1-a=0 (11) 前ページと同じように考えてもよいが, 処理が煩雑に感じられる。そこで, 指針 cost=xとおいて, 方程式を整理すると 解答 重要 148 239 定数αの入った方程式 f(x) =αの形に直してから処理に従い, 定数α を右辺に移項した x2+x-1=αの形で扱うと, 関数 y=x²+x-1-1≦x≦1) のグラ フと直線y=αの共有点の問題に帰着できる。 →直線 y=α を平行移動して, グラフとの共有点を調べる。 なお (2) では x=-1, 1であるxに対して0はそれぞれ1個, 1 <x<1であるxに対して0は2個あることに注意する。 cosl=x とおくと,0≦0<2πから-1≦x≦10 この解法の特長は、放物線を 方程式は したがって (1-x2)-x+a=0 x2+x-1=a 固定して, 考えることができ るところにある。 4 4章 三角関数の応用 照。 f(x)=x2+x-1とすると f(x) = (x+1)² - 15/05 グラフをかくため基本形に。 4 5 である。 よって, 右の図から - ≦a≦1 4 1 I て,求める解の個数は次のようになる。 1x.202=(x (1)求める条件は,-1≦x≦1の範囲で,y=f(x) のグラフと直線 y=α が共有点をもつ条件と同じ (2)y=f(x) のグラフと直線y=αの共有点を考え y=f(x) y [6]-10y=a 1 [5] 1 2 1x + [4]/ [1] a<21<a のとき 共有点はないから 0個 [3]+ 5 [2] 4 [2] α=-- のとき,x= から 2個 STD Sea XA [6]+ - 5 [3] <a<1のとき -1<x<-12-1/12<x<0の範囲に共有点 はそれぞれ1個ずつあるから 4個 [4] a=−1 のとき,x=-1, 0 から 3個 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから 2個 [6]a=1のとき,x=1から1個 [5] 0 π 12 0 [4]+ [2]- [3] [4] -1 1 2

解決済み 回答数: 1
数学 高校生

[1]はなぜ判別式だけではだめで[2]はなぜ判別式がいらないのですか?

重要 例 148 三角方程式の解の存在条件 La の値の eの方程式 sin'0+acos0-2a-1=0を満たすりがあるような定数。 囲を求めよ。 基本14 → cosa=x とおくと, -1≦x≦1, 与式は 指針 まず, 1種類の三角関数で表す (1-x2)+ax-2a-1=0 すなわち x2-ax+2a=0 よって、求める条件は, 2次方程式 ①が-1≦x≦1の範囲に少なくとも1つの解をも つことと同じである。 次の CHART に従って, 考えてみよう。 2次方程式の解と数の大小 グラフ利用 D, 軸, f(k) に着目 cos0=xとおくと, -1≦xであり, 方程式は (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0... ① この左辺をf(x) とすると, 求める条件は方程式f(x) = 0 が-1≦x≦1の範囲に少なくとも1つの解をもつことで ある。 晶検討 x2ax+2a=0をにつ いて整理すると nia-S+0=0$ x²=a(x-2) よって、放物線y=xと 直線 y=α(x-2)の共有 点のx座標が -1≦x≦1の範囲にある を考えてもよい。 解 これは,放物線y=f(x) とx軸の共有点について,次の [1] または [2] または [3] が成り立つことと同じである。 [1] 放物線y=f(x) が -1<x<1の範囲で, x軸と異な る2点で交わる,または接する。 このための条件は,①の判別式をDとするとD≧O a(a-8)≥0 D=(-a)2-4・2a=a(a-8) であるから 答編 p.147 を参照。 [1]) YA a 答 1) (2 解答 よって a≦0,8≦a ...... ② 軸x=1/3について -1</1/8 <1から -2<a<2… ③ 0 10 -1 1 I f(-1)=1+3a>0から a>. 3 [2] f(1)=1+α>0 から a>-1 ⑤ YA ②~⑤の共通範囲を求めて <a≦o [2] 放物線y=f(x) が-1<x<1の範囲で, x軸とただ 1点で交わり,他の1点はx<-1, 1 <xの範囲にある。 このための条件は f(-1)f(1)<0 ゆえに (3a+1)(a+1) < 0 よって -1<a< 3 [3] 放物線y=f(x) がx軸と x = -1 またはx=1で交わ る。 f(-1)=0 または f(1) = 0 から a=- [1], [2], [3] を合わせて -1≤a≤0 1/23 または α=-1 【参考[2] と [3] をまとめて,f(-1)f(1)≦0 としてもよい。 練習 0 の方程式 2cos20+2ksil 148 -1 0 F A 1 -1 00

解決済み 回答数: 1
数学 高校生

数1の質問です! tに置き換えて範囲を求めるところで sin、cosをそれぞれどのように考えているのかを 分かりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

補充 例題 119 三角 0°180°のとき, y=sin'+cos 0-1 の最大値と最小値を求めよ (s) [釧路公立大 基本 60,112, 重要 そのときの0の値を求めよ。 CHART & SOLUTION aa 三角比で表された2次式 1つの三角比で表す 定義域に注意 前ページと同様に考える。 ①yの式には sin (2次) とcos (1次) があるから, 消去するのは sin である。 かくれ 件 sin'0+cos'01 を利用して,yを cos だけの式で表す。 ② cose をでき換える。 このとき, tの変域に注意。 cos0=t とおくと,0°≦0≦180°のとき -1st ま ③yはtの2次式 - → 2次関数の最大・最小問題に帰着(p.109 参照)。 で解決。 答 sin20+cos20=1より, sin'=1-cos' であるから 2 次式は基本形に変形 最大・最小は頂点と端点に注目 40'aie-1-0 2000 102000 =0nied+(0'nia-D)S sino を消去。 y=sin20+ cos 0-1=(1-cos²0) + cos 0-1812020 =-cos20+cose cos0=t とおくと,0°0≦180°から -1≤t≤1 ...... ① を tの式で表すと 満たすらを y=-f+t=- ①の範囲において,y はのは 24 基本形に変形。 -1 1 最大 41 1 01 1-2 t= で最大値 0800- 4x=1 頂点 t=-1で最小値-2をとる。 0° 0≦180°であるから 最小-2 端点 よって t=1/2となるのは、COS=1/2から t=-1 となるのは, cos0=-1から 0=60° 0=180° 0=60°で最大値 1/10=180°で最小値 -2 ◆三角方程式を解き 値、最小値をとる からの値を求める PRACTICE 1196 2001-20 08120>0SI

解決済み 回答数: 1
数学 高校生

なぜ0°≦θ≦180°になるんですか 別に360°まででもいい気が、、教えてください。

基本 例題 12 内積の計算(成分) 次のベクトルα,6の内積と,そのなす角 0を求めよ。 00000 (1)=(-1, 1), 6=(√3-1, √3+1) (2) = (1,2) (1-3) /p.379 基本事項 4 指針 内積の成分による表現 a= (a1, a2), 万= (b1,62) のとき,a, ものなす角をする と a.b=a1b₁+a2b2 a.b cos 0= B |a||| 成分が与えられたベクトルの内積はAを利用して計算。 また、ベクトルのなす角はBを利用して, 三角方程式 cos0=α (-1≦a≦1) を解く 問題に帰着させる。 かくれた条件0°≦0≦180°に注意。 (1) 解答 また ろえる BC sin COS a1=(-1)x(√3-1)+1×(√3+1)=2 ||=√(−1)'+12=√2. =√√3-1)^2+(√3+1)²= √8=2√2 よって a coso= 2 |||| V2 ×2√2 0°0≦180°であるから (2) また 0=60° a = 1×1+2×(-3)=-5 lal=√12+2=√5, =√1+(-3)=√10 1 2 (x成分の積)+(y成分の積 ) (1) YA 1 P +60° 1x 0 -1-2 (2) 98 P -5 1 45° 135° h 0 0=135° -11 0 1x √2 a COS 0=- ab √√√√10 0°0≦180°であるから 余弦定理を利用してベクトルのなす角を求める 上の例題 (1) において, a, b のなす角 0は,次のように余弦定理を利用して求めることもで きる。 =OA, 6=OBとする。 2=n+(-n) A(-1, 1), B(√3-1√3+1), 0 = ∠AOB であるから よって OA2=(-1)'+1=2, B(v3-1,√3+1) A(-1,1)/ 2+8-6 1 2/22/2 2 OB2=(√3-1)^2+(√3+1)=8, AB={√3-1-(-1)}'+(√3+1-1)=6 Cos 0= OA2+ OB 2 - AB2 20A・OB 180°であるから 0=60° なす角 1192 CA 次の内県 GUNCA 646 (2つのベクトルα 母を求めよ (2)

解決済み 回答数: 1
数学 高校生

至急頼みます! 数2の三角関数のところです。 波線をつけたところがなんでそうなったの分かりません。 誰か教えてください

・例題 基本 155 三角方程式・不等式の解法 (3) 倍角の公式 ①①①① 002のとき、次の方程式、不等式を解け。 (1) sin20=cos 0 (2) cos 20-3 cos0+2≥0 基本 154 2倍角の公式sin20=2sin0cos0, cos20=1-2sin' 0=2cos" 0-1 を用いて, 関数の種類と角を0に統一する。 [2] 因数分解して、 (1) なら AB=0, (2) ならABの形に変形する。 [3] -1sin0≦1, cos01 に注意して, 方程式・不等式を解く。 CHART と20が混在した式 倍角の公式で角を統一する (1) 方程式から 3 2'2 解答 2sincost=coso ゆえに cos0(2sin0-1)=0 よって 1 cos0=0, sin0= 2 020 <2であるから COS 00より O sin0= =1/2より 九 5 以上から、解は 0= (2) 不等式から 整理すると ゆえに 0=66 π 75 5 6 2' 6" 2cos20-1-3cos 0+2≧0 2cos20-3cos 0+1≧0 (cos 0-1)(2 cos 0-1)≥0 020 <2では、cos0-150 であるから sin20=2sin @coso 4種類の統一はできな いが積=0の形にな るので、解決できる。 AB=0> A0 またはB=0 sinの参考図。 0-/1/2 COS 0 0 程度は,図が なくても導けるよう に。 < cos20=2cos20-1 cos 0-1=0, 2 cos 0-1≤0 よって cos 0=1, cos 0. したがって,解は 5 0-0. So≤ <cos0-1=0 を忘れな いように注意。 なお、図は cos Is の参考図。

解決済み 回答数: 1