数学
高校生
解決済み

(1)は二次関数のグラフで(2)が三角関数のグラフなのはなぜですか?

0000 a の値の範 例題 重要 例 149 三角方程式の解の個数 は定数とする。 0 に関する方程式 sin0-cos0+a=0 について, 次の問いに 答えよ。 ただし, 002 とする。 (2) この方程式の解の個数をαの値の範囲によって調べよ。 (1) この方程式が解をもつためのαの条件を求めよ。 与式は つの解をも 20をαにつ x-2) 泉 y=xと 2)の共有 囲にある x²+x-1-a=0 (11) 前ページと同じように考えてもよいが, 処理が煩雑に感じられる。そこで, 指針 cost=xとおいて, 方程式を整理すると 解答 重要 148 239 定数αの入った方程式 f(x) =αの形に直してから処理に従い, 定数α を右辺に移項した x2+x-1=αの形で扱うと, 関数 y=x²+x-1-1≦x≦1) のグラ フと直線y=αの共有点の問題に帰着できる。 →直線 y=α を平行移動して, グラフとの共有点を調べる。 なお (2) では x=-1, 1であるxに対して0はそれぞれ1個, 1 <x<1であるxに対して0は2個あることに注意する。 cosl=x とおくと,0≦0<2πから-1≦x≦10 この解法の特長は、放物線を 方程式は したがって (1-x2)-x+a=0 x2+x-1=a 固定して, 考えることができ るところにある。 4 4章 三角関数の応用 照。 f(x)=x2+x-1とすると f(x) = (x+1)² - 15/05 グラフをかくため基本形に。 4 5 である。 よって, 右の図から - ≦a≦1 4 1 I て,求める解の個数は次のようになる。 1x.202=(x (1)求める条件は,-1≦x≦1の範囲で,y=f(x) のグラフと直線 y=α が共有点をもつ条件と同じ (2)y=f(x) のグラフと直線y=αの共有点を考え y=f(x) y [6]-10y=a 1 [5] 1 2 1x + [4]/ [1] a<21<a のとき 共有点はないから 0個 [3]+ 5 [2] 4 [2] α=-- のとき,x= から 2個 STD Sea XA [6]+ - 5 [3] <a<1のとき -1<x<-12-1/12<x<0の範囲に共有点 はそれぞれ1個ずつあるから 4個 [4] a=−1 のとき,x=-1, 0 から 3個 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから 2個 [6]a=1のとき,x=1から1個 [5] 0 π 12 0 [4]+ [2]- [3] [4] -1 1 2

回答

✨ ベストアンサー ✨

⑴も⑵も二次関数で考えています。
その上で、
⑴では、θの解を持つこと→cosθの解を持つこと
と捉え直し、考えています。

⑵では、cosθが
1つのθの解を持つ時と、
2つのθの解を持つ時があるわけです。
それを調べるために、cosθのグラフを書いて、
「cosθ=〇〇のときは解が2個あるな!」
と調べたいわけです。

さな

わかりました!ありがとうございます🙇‍♀️

この回答にコメントする
疑問は解決しましたか?