学年

教科

質問の種類

数学 高校生

確率を求める問題なのですが点を固定して考えないで6^3としてしまいました。この方法ではなぜいけないのか教えて頂きたいです。よろしくお願い致します。

例題 13.2 4/19 半径1の円に内接する正六角形の頂点を A1, A2, ..., Ag とする.これらから, 無作為に選んだ3点(重複を許す)を頂点とする三角形の面積の期待値(平均値)を求 めよ. 2つ以上が一致するような3点が得られたときは,三角形の面積は0と 考える. 【解答】 正六角形A1A2 A3 A4 A5 A6 が内接する円の中心をO とする. A1 2=AAAA BAAAA A2 A6 88-,A,AA A3 A5 A4 無作為に選んだ1つの頂点をA,とし,固定して考える。 65 ※重複を許すので かくりの合計が1にならないことに 注意!! このとき、他の2頂点の選び方の総数は62=36(通り) あり,これ らは同様に確からしい。 車は9 そして、次の4つの場合が考えられる. (ア) 三角形 A1A2A6 と合同な三角形ができる. (イ) 三角形 A1 A3A5 と合同な三角形ができる. (ウ) 三角形A1 A2A4と合同な三角形ができる. (エ) A」 を含めて2点以上が一致する (ア)のとき,他の2頂点について, (A2, A3), (A3, A2), (A2, A6), (A6, A2), (A6, A5), (A5, As) の場合がある. よって, (ア)の確率)= 6 1 36 6 (イ)のとき,他の2頂点について, (A3, A5), (A5, As) の場合があ 対称性から1つの頂点は固定 して, 残り 2頂点の選び方を考 えればよい。 三角形の形で分類しておく. がこの検査 って ((イ)の確率)= 2 36 == 1 18 (ウ)のとき,他の2頂点について, (A2, As), (A1, A2), (Az, As),

未解決 回答数: 1
数学 高校生

(2)の問題でaの二乗を求めた時に出た答えを約分しちゃダメな理由とaの二乗から二乗を外さないで計算する理由を教えてほしいです!!

P.210 基本 基本 例題 132 多角形の面積 次のような図形の面積Sを求めよ。 (1) AB=6,BC=10, CD = 5, ∠B=∠C=60°の四角形ABCD (2) 1辺の長さが1の正八角形 CHART & THINKING (1) まずは右のように図をかいてみよう。 基本131 からSを、それぞ 多角形の面積はいくつかの三角形に分割するのが基本方針 だが,対角線 AC, BD のどちらで分割するのがよいだろうか? ACで分割→ △ABCに余弦定理を用いると、線分AC の 長さは求められるが,DACの面積はすぐにはわからない。 BD で分割 → △BCD は BC:CD=2:1, ∠BCD=60° に 注目すると, ∠DBCの大きさや線分 BD の長さがわかる。 これを利用して △ABD の面 積を求めてみよう。 6. 5 60° 60° B 10 C 4章 解 (1) (後半) ロンの公式を用 =4+5+6 から って =√s(s-as- (2) 正八角形の外接円の中心を通る対角線で8つの三角形に分割すればよい。 解答 (1) BCD において, BC=10, CD = 5,∠C=60°から ∠BDC=90° ∠DBC=30° BD=BCsin60°=5√3 6 5√3 157 15 22 30° 15/7 △ABD において ∠ABD= ∠ABC-∠DBC=30° 30° 60℃ 4 よって, 求める面積は B 10 60° S=△BCD+ △ABD _n 150° 150=- =1/23・5・5√3+1/23・6・5v3 sin30°=20√3 (2) 正八角形の外接円の中心を0, 1辺をAB とすると AB=1, ∠AOB=360°÷8=45° OA=OB=α とすると, OAB において, 余弦定理により 12=α²+α2-2aacos 45° 整理して 1=(2-√2)a² s150°=- ゆえに a²=- 1 2-√2 2+√2 2 よって, 求める面積は S=8△OAB=8asin45°=2(√2+1) 8.1/23a'si PRACTICE 132Ⓡ 合同な8個の三角形に分 ける。 A 1 B a 45% a αのまま代入する。 )は鈍角三 次のような図形の面積を求めよ。 (1)AD // BC, AB=5,BC=6,DA=2,∠ABC=60°の四角形ABCD (3)1辺の長さが1の正十二角形 (2)AB=2,BC=√3+1,CD=√2,B=60°,C=75° の四角形ABCD 15 三角形の面積、空間図形への応用

未解決 回答数: 1