学年

教科

質問の種類

数学 高校生

69.1.2 記述に問題ないですか? 問題がないなら、不要な文など(あれば)教えてほしいです。

1410 基本例題 69 重心と線分の比面積比 右の図の△ABC で, 点D, Eはそれぞれ辺BC, CA の中 点である。 また, AD と BE の交点をF,線分 AF の中点を G, CG と BE の交点をHとする。 BE=9のとき (1) 線分 FH の長さを求めよ。 (2) 面積について, △EBC=[ 練習 69 解答 (1) AD, BE は△ABCの中線であるから, その交点 F は △ABC の重心である。 よって ゆえに FE= BE=1/3×9=3 1 2+1 また, CとFを結ぶと, CG, FEは の中線であるか AFC ら、その交点Hは△AFC の重心である。 2 2+1 よって, FH: HE=2:1から FH= 口 (2) △FBC: △FBD=BC: BD =2:1 よって △FBC=2△FBD また △EBC: △FBC=EB: FB=3:2 ゆえに △EBC= BF:FE =2:1 | △FBD である。 指針 (1)点F は △ABCの中線 AD, BE の交点であるから,点Fは△ABCの重心 そこで,三角形の重心は各中線を2:1に内分するという性質を利用し,線分 の長さを求める。次に, 補助線CFを引き, AFC で同様に考察する。 3 2 (2)△EBCと△FBC, AFBCと△FBD に分けると,それぞれ高さは共通である。 よって、 面積比は底辺の長さの比に等しいことを利用する。 -------- まず, △FBC を △FBD で表し,それを利用して △EBC を △FBD で表す。 880064 CHART 三角形の面積比 等高なら底辺の比等底なら高さの比 AFBC p.407 基本事項 ④ =1/3×2. X2AFBD=3AFBD B ×FE= =1/3×3=2 A F D h h E 右の図のように,平行四辺形 ABCD の対角線の交点を 0, 辺BCの中点をMとし, AMとBDの交点を P 線分 OD の中点をQ とする。 (1) 線分PQの長さは,線分BDの長さの何倍か。 (2) △ABP の面積が6cm²のとき m. m 00000 B B かくれた重心を見つけ出す /G F D Pl A A H M 高さは図のんで共通。 ∴ 面積比=BC : BD C 高さは図のん で共通。 面積比=EB:FB 注意: は 「ゆえに」を表す 記号である。 0 Sut ) 指 C △定 定 AI よゆよ ま 944

回答募集中 回答数: 0
数学 高校生

なぜ二つの室の圧力が同じなのでしょうか! よろしくお願いします。

9月21日 8限目 演習問題 |1 2015 九大 図のように、 断熱材でできた密閉さ れた容器が隔壁により第1室と第2室 に仕切られている。 隔壁は各室の気密 性を保ちながら容器内を摩擦なくなめ らかに動く。 また, 隔壁を固定するこ とも可能である。 隔壁の中央部は熱を 通す素材で、それ以外の部分は断熱材 でできている。さらに, 中央部は開閉 可能な断熱カバーでおおわれており, このカバーの開閉により両室間の熱の移動を制御できる。すなわち, 断熱カバーが閉じてい いれば、両室の間に熱の移動は無く, 断熱カバーが開いていれば,両室の間でゆるやかなB. 熱の移動が可能である。 隔壁中央部の熱容量はないものとする。 第1室内にはヒーターが 設置されており, 第1室の気体を加熱することができる。 容器 第1室 ヒーター 隔壁 断熱カバー 第2室 隔壁中央部 IPA (l). 3 第1室と第2室に,気体定数をRとして定積モル比熱が 22 R である同種の単原子分子 理想気体を封入し, 次に述べるような状態変化を行った。 なお, 問題中の温度はすべて絶 対温度で与えられている。 初めの状態 A では, 隔壁は静止しており, 断熱カバーは閉じている。 このとき, 第1 室の気体の体積, 温度,圧力はそれぞれVA, TA, PA であり, 第2室の気体の体積, 溫 度,圧力はそれぞれ 3VA, TA, PAであった。 (1) 第1室の気体の物質量(モルを単位として表した物質の量) , VA, T'A' PA, R の 中から必要なものを用いて表せ。 状態 A から, 隔壁を固定し断熱カバーを閉じたままヒーターによりゆっくり第1室の 気体を加熱したところ, 第1室の気体の温度が2TA となった。 この状態を状態 B とする。 (2) 状態 A から状態 B への変化の間にヒーターが第1室の気体に加えた熱量を, VA, TA,PA, R の中から必要なものを用いて表せ。 次に, 状態 B から隔壁を固定したまま断熱カバーを開け, しばらく待ったところ, 熱 平衡に達した。 この状態を状態Cとする。 (3) 状態Cにおける第1室, 第2室の気体の温度を, VA, TA, PARの中から必要な ものを用いて表せ。 (4) 状態 B から状態 C への変化の間に第1室から第2室に移動した熱量を, VA, TA, PA, R の中から必要なものを用いて表せ。 (5) 状態Cにおける第1室の気体の圧力, 第2室の気体の圧力を、 それぞれVA, TA, PA, R の中から必要なものを用いて表せ。 再び状態 A から考える。 以後, 隔壁は自由に動けるとし, 断熱カバーは閉じている。 ヒーターによりゆっくり第1室の気体を加熱し、 総量 3PAVA の熱を加えた状態を状態 Dとする。 (6) 状態 A から状態 D への変化の間に生じた第1室, 第2室の気体の内部エネルギーの 変化をそれぞれ 4U 1, 4U2 とする。 AU1+4U2 を, VA, PA を用いて表せ。 (7) 状態 D における第1室の気体の体積をVD とし, 状態 D における第1室, 第2室の 気体の圧力をpp とする。 4U を, VA, PA, VD, PD を用いて表せ。 (8) PD を, VA, TA, PA, Rの中から必要なものを用いて表せ。 なぜ? ださい

未解決 回答数: 1
数学 高校生

問4の事象の数え方が分かりません。教えてください。お願いします🙏 赤本です。もしかしたら間違えですか?

58 2021年度 次の各問に答えよ。 解答用紙には, 解答だ (配点30%) 2 bes AからHの8つの袋に, それぞれいくつかの玉が入っている。 袋に入っている玉の個数はじ ke 下の通りである。 TECHT A: 5個, B: 4個, C: 2個 D : 7個 EからH: 3個 10 00 O D 紙の枠内に記述せよ & 図2-1. それぞれの袋に入っている玉の数 Liane 袋の外見は同じで, 袋を開けても, 玉の数以外でAからHのいずれの袋なのかを判断する手 U 4878 OFLY がかりはない。 OTS. ETOS SAJE trag, いま、AからHの8つの袋を, 外見が同じ4つの箱に2つずつ入れた。 箱の中に入っている袋の種類は,以下のいずれかの条件を満たしている。 . ・条件1 : AからDのいずれかの袋が2つ入っている 2つ入っている 3232 条件2:EからHのいずれかの袋が . ・条件3 : AからDのいずれかの袋と, EからH のいずれかの袋が, 1つずつ入っている ここで、条件1を満たす箱は1つ, 条件2を満たす箱は1つ、条件3を満たす箱は2つあるこ THEE 80PF. に入っている玉の数が3個以下である確率を求めよ。 AULER [E] とがわかっている。 2084 181. $824. 850 この箱を、無作為に選んで開けることにした。 BUTA ecal 2002. 1780 1801 8801 Chap IADA 1 問 1.選んだ箱から取り出す1つ目の袋に入っている, 玉の個数とそれに対応する確率を, 表の 88TA. SHTAL 8TTA 形式で示せ。 TIPA BORA 88TA Cake 問2. 条件1の箱を選んだ場合の, 箱に入っている玉の総数とそれに対応する確率を,表の形式 で示せ。 また、箱に入っている玉の総数の期待値を求めよ。 問 3. 無作為に箱を選んだ場合の、箱に入っている玉の総数とそれに対応する確率を、表の形式 ZA で示せ。また、箱に入っている玉の総数の期待値を求めよ。 EEN GOE 1804 EXPA S8RA 180A 問4. 無作為に選んだ箱から取り出した1つ目の袋に3個の玉が入っていたとき,もう1つの E SABA

回答募集中 回答数: 0