学年

教科

質問の種類

数学 高校生

回答の[2]a=-3のときについてですが、 なぜ3点が重なっているのに「放物線と円が1点で接する場合」になるのですか??

重要 104 放物線y=x2+αと円x+y2=9について, (1)この放物線と円が接するとき,定数αの値 (2) 異なる4個の交点をもつような定数αの値の範囲 指針 放物線と円の共有点についても,これまで学習した方針 共有点 実数解 接点重解 で考えればよい。 この問題では,xを消去して, yの2次方程式 (y-a)+y2=9の 実数解, 重解を考える。 放物線の頂点はy軸上にあることにも 注意。 (1) 放物線と円が 接するとは,円と放物線が共通の接線をも つことである。この問題では,右の図のように, 2点で接する 場合と1点で接する場合がある。 (2) 放物線を上下に動かし, (1) の結果も利用して条件を満たす αの値の範囲を見極める。 (1) y=x+αから (y-a)+y=9 1点で 接する 2点で接する xを消去すると,yの2 次方程式が導かれる。 ゆえに3≦y≦3. ② [2] a=-3 4 a=3 a=-37 [1] 2 YA 3 A 3 3- WA 基本9 PRON D 1418-1 とき したがって と円が 1つの実数を put. NO (1) の式を よって、+370 ついて 3g 30から x 13. X -30 (-3)=-3-a>0 /3 -3 -3| の共通範囲を求め x2=y-a これをx+y=9に代入して 解答 よって y2+y-a-9=0 ① ここで,x2+y2=9から [1] 放物線と円が2点 で接する場合 x2=9-y20 2次方程式 ① は②の 範囲にある重解をもつ。 よって、 ①の判別式を -3 13 0 -3 Dとすると D=0 D=1²−4·1·(—a—9) 37 4 =4a+37 37 であるから このとき, ①の解は y=- となり,②を満たす。 4a+370 すなわち α = - + 4 2次方程式 2 [2] 放物線と円が1点で接する場合 図から, 点 (03) (03)で接する場合で a=±3 以上から、 求めるαの値は 37 a=- ±3 4 by2+qy+r=0 の 重解は y=- 2p 頂点のy座標に注 20共有点を考え であるから、右の と直線2gが援 データとして、 -3

未解決 回答数: 1
数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

解説をみてもよくわかりません 解説お願いします

-20 基本例 例題 54 平面上の点の移動と反復試行 右の図のように,東西に4本, 南北に5本の道路がある。 地点Aから出発した人が最短の道順を通って地点Bへ 向かう。このとき,途中で地点P を通る確率を求めよ。 ただし,各交差点で, 東に行くか, 北に行くかは等確率と し,一方しか行けないときは確率1でその方向に行くも のとする。 A 基本 52 重要 55 指針 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 から, これは,どの最短の道順も同様に確からしい場合の確率で,本間は道順によって確率 5C2X2C2 7C3 とするのは誤り! 00000 P B 重要 右図の 出たら 別に 「たら れぞ Aは う確 金 が異なる。 例えば, A111→ →→P→→ Bの確率は C D P B 11 1 ・1・1・1・1= 222 A→1→11P 11 Bの確率は 111 11 1 ・1・1= A 2 2 2 22 32 XUS したがって,Pを通る道順を, 通る点で分けて確率を計算する。 右の図のように,地点 C, D, C′', D', P'をとる。 解答 P を通る道順には次の3つの場合があり,これらは互いに 排反である。 D P B C D' P' [1] 道順 A→C→C→P この確率は 1/2x/121x1/2×11=(1/2)=1/1/2 A [2] 道順 A→D→D→P この確率は sc.(1/2)(1/2)x1/2×1=3 (1/2)=1/4 3 16 [3] 道順 AP′'→P [1] ↑↑↑→→と進む。 [2] ○○○と進む。 この確率はC(1/1) (12/12 × =6 6 2 32 よって、求める確率は 1 3 6 + 16 8 16 32 32 ○には,1個と 12個が 入る。 [3] 〇〇〇〇と進む。 ○には、2個と12個が 2 入る。 練習 右の図のような格子状の道がある。スタートの場所か ③ 54 端で表が出たときと,上の端で裏が出たときは動かな いものとす み,裏が出たら上へ1区画進むとする。ただし,右の 表が出たら右へ1区画進 ら出発し,コインを投げて, ゴール A 解答

回答募集中 回答数: 0
数学 高校生

上と下で問われていることがどう違うのですか?

407 00000 12個のさいころを同時に投げるとき, 少なくとも1個は6の目が出るという事象 | 重要 例 46 確率の基本計算と和事象の確率 000 集まった。 D(R)と 本 43 44 =P(0) を1列 順に受 を4, 出た目の和が偶数となるという事象をBとする。 (1) AまたはBが起こる確率を求めよ。 (2) A,Bのどちらか一方だけが起こる確率を求めよ。 指針 全事象をUとすると, Uは右の図のように、互いに 排反 な4つの事象 A∩B, ANB, ANB, ANB に分けら れる。 (1) P(AUB)=P(A)+P(B)-P(A∩B) を利用。 (2)A,Bのどちらか一方だけが起こるという事象は, AND または ANB (互いに排反)で表される。 基本 43 44 ・U A B A∩BA∩B AB 2 ANB 砕 C (1)Āは,2個とも6以外の目が出るという事象であるか少なくとも・・・ 52 11 には余事象が近道 解答 ら P(A)=1-P(A)=1- 62 36 並び 個とも奇数の場合で P(B)= また、目の和が偶数となるのは, 2個とも偶数または2 32+32 18 検討 指針の図を、次のように 表すこともある。 62 36 レゼン 更に,少なくとも1個は6の目が出て,かつ, 出た目の 和が偶数となる場合には, 二! 通り。 (2, 6), (4, 6), (6, 2), (6, 4), (6, 6) の5通りがあるから P(A∩B)= ント =り 1 30 よって、求める確率は ゼン の P(AUB)=P(A)+P(B)-P(A∩B) = 18 11 + 36 36 受け C2 共 (2) (2)Aだけが起こるという事象は A∩B, B だけが起こる という事象は AnB で表され,この2つの事象は互いに 排反である。 よって、求める確率は P(A∩B)+P(A∩B) ={P(A)-P(A∩B)}+{P(B)-P(A∩B)} AA ANB A∩B ANB 図から,次の等式が成り 立つ。 P(A∩B)=P(A)-P(A∩B), P(A∩B)=P(B)-P(A∩B) また,(2)次の等式を 利用してもよい。 P(A∩B)+P(A∩B) =P(AUB)-P(A∩B) 5 5 -B- B- ANB = 62 36 5 24 2 36 36 3 11 18 JE + -2° 36 36 5 19 36 36 (1)の結果を利用。 練習 ジョーカーを除く1組52枚のトランプから同時に2枚取り出すとき,少なくとも1 ③ 46 枚がハートであるという事象をA, 2枚のマーク (スペード, ハート, ダイヤ, クラ

解決済み 回答数: 1
数学 高校生

左の写真の黄色チャートの問題ではKと aの値が出てからさらに場合分けをしているのに、右写真のフォーステでは場合分けをしていないのはなぜですか?

73 重要 例題 43 虚数を係数とする 2次方程式 00000 xの方程式(1+i)x2+(k+i)x+3+3ki=0 が実数解をもつように,実数k の値を定めよ。また,その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る (C) 基本 38 2章 DOから求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1 + i)a2+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0,b=0α, kの連立方程式が得られる。 6 2次方程式の解と判別式 解答 (-8) S 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i = 0 α, kは実数であるから, a2+kα+3,a2+α+3kも実数 ①よって大] a2+ka+3=0 ...... ① a2+α+3k=0 ② ①-② から ゆえに (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって k=1 a=3&c 0=(-a)+x(E- [1] k=1 のとき ① ② はともに α+α+3=0 となる。 これを満たす実数αは存在しないから, 不適。 [2] α=3 のとき ①,②はともに 12+3k=0 となる。 ( x=α を代入する。 a+bi=0 の形に整理。 この断り書きは重要。 素数の相等。 α 2 を消去。 消去すると α-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 ←D=1°-4・1・3=-11 < 0 | 1:32+3k+3=0 ②:32+3+3k=0 ゆえに k=-4 [1], [2] から 求めるkの値は k=-4 実数解は x=3

解決済み 回答数: 1