学年

教科

質問の種類

数学 高校生

高校1年生 数Ⅱ 式と証明 2の(4)と5の(3)を計算してみたのですが、答えが合いません。教えていただきたいです🙏

(1) (2a+b)x+(3a-b+5)=0 (2) (a+3)x¹+(3a-b)x+(b+c+2)=0 CF) (1) a=-1.6=2 (2) 2 次の等式がxについての恒等式となるように、 定数a, b, c, d の値を定めよ。 (1) x2+7x+6=(ax+b)(x+1) (2) ax+bx=(x-2)(x+2)+c(x+2)* (3) x²-a(x-2)²+(x-2)+c ( a(x-1)³ + (x-1)²+x-1)+d=x²+x²+*+1 (3) (1) -1,b=6 (2) a=2, b=4,c=1 (3) a=1, 6-4, c=4 (4) a=1,0=4, c=6, d=4 次の等式がxについての恒等式となるように、 定数a,b,cの値を定めよ。 d b 3x+5 (1) ²=1+1 (2)x+1+x+3 (x+1)(x+3) 4 (x+1)(x-1)2 x+1 (2) a=-3, b=-9, c-7 解答 (1) 略 (2) + WE (1) a=1, b = -1 (2) a=1, b=2 (3) a=1, b=-1, c=2 4 次の等式を証明せよ。 (1) (a²+36³)(c²+3d²)=(ac-3bd)² +3(ad+bc)² (2) a²+b²+c²_ab_bc-ca=½{(a−b)²+(b−c)²+(c −e)²} (12) 略 (3) 略 5a+b+c=0のとき, 次の等式が成り立つことを証明せよ。 (1) (a+b)(b+c)(c+α) +abc=0 (2) '+ab+b2=(ab+bc+ca) (3) a²b+c)+ b²c+a)+c²(a+b)+3abc=0 (1) 略 (2) 略 (3) 略 (x-1)2 26 29 ⑥1=1/2のとき、次の等式が成り立つことを証明せよ。 6 (1) (a+b)(c-d)=(a−b)(c+d) (2) 7 a:b:c=2:3:4, abc0 とする。 ab+bc+ca (1) の値を求めよ。 a² +6² +c² (2) 3a+2b+c=32のとき, a,b,cの値を求めよ。 (2) a=4, b=6, c=8 ab+cd ab-cd = = a²+c² a²-c² [8a> b,c>d のとき、次の不等式が成り立つことを証明せよ。 4c+bd>ad+bc 12 次の (1) (2) 13 次 (1) [14 15

回答募集中 回答数: 0
数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0