学年

教科

質問の種類

数学 高校生

解説の波戦引いたところなんでそうなるんですか🙇‍♂️ 引き算やからbの2乗の値によるんじゃないんですか?

〔1〕 関数f(x)=ax2 + bx + c について,y=f(x)のグラフをコンピュータ トを用いて表示させる。ただし、このコンピュータソフトでは、 じゅうぶん は十分に広い範囲で変化させられるものとする。 a. b. 2024年度 数学Ⅰ/本試験 67 (2) 次の操作 A. 操作 B. 操作 Cのうち,いずれか一つの操作を行う。 の部分と1<x<0の部分のそれぞれと交わる, 上に凸の放物線が表示 a,b,c の値をそれぞれ定めたところ, 図1のように, x軸の2くく STAIN 18.0 れた。 $100.0 PORLA BA+ 2008 20 18620 2100.0 操作 A 図1の状態からb.cの値は変えず, aの値だけを減少させる。 操作B 図1の状態からacの値は変えず,bの値だけを減少させる。 操作C 図1の状態からa, bの値は変えず, c の値だけを減少させる。 このとき、 操作 A, 操作 B. 操作 Cのうち 5 「不等式f(x)の解が、すべての実数となること が起こり得る操作は キ また 方程式f(x)=0は異なる二つの正の解をもつこと が起こり得る操作は ク rece.0 腰につ -1 0 2 3 4x ク の解答群 (同じものを繰り返し選んでもよい。) 2020 43112 19:0 2800.0 O ない ① 操作 A だけである 020 0108.0 020 ② 操作 Bだけである 586.0 T0 818.0 ③ 操作 Cだけである ATLA 00000 0002 0 (1) 図1の放物線を表示させる a,b,cの値について 操作 A と操作 Bだけである 0212.0 0 9023.0 ア 0. b 0. C ウ 0. b2-4 ac 0. 4a-2b+cl オ 0. a-b+c 0 ⑤ 操作 A と操作 Cだけである ⑥ 操作 B と操作 Cだけである 操作 A と操作 Bと操作 Cのすべてである である。 900 08.0 ager.o 8182.0 8108.0 0385.0 00 rara.o ア カ の解答群(同じものを繰り返し選んでもよい。) 図 813.0 0 ① COUT 2 08.0 Trot.o

回答募集中 回答数: 0
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0