学年

教科

質問の種類

数学 高校生

〜を引いたところの変形の仕方がわかりません。

基本 例題 20 極限の条件から数列の係数決定など ①①①① (1) 数列 {a} (n=1, 2, 3, ...) が lim (3n-1)α=-6 を満たすとき, ■である。 lim nan 8 7118 [類 千葉工大] (2) lim(√2+an+2-√n²-n) =5であるとき、 定数 αの値を求めよ。 /p.34 基本事項 2 基本 18 41 指針 (1)条件 lim (3n-1)a=-6を活かすために,na"=3n-1)lan× n と変形。 →∞ 13n- 数列{37-1 は収束するから,次の極限値の性質が利用できる。 liman=a, limbn=β⇒limanbn=aβ (a,βは定数) 818 818 n18 (2) まず, 左辺の極限をαで表す。 その際の方針は p.38 基本例題18(3) と同様。 (1) nan=(3n-1)anx n であり 3n-1 lim(3n-1)an=-6, →∞ lim n→∞ 3n-1 n = =lim n1α 1 3- n n limnan=lim(3n-1)an×lim よって n→∞ n→∞ n→∞ 3n-1 13 nan を収束することが わかっている数列の積で 表す。 (税込) 極限値の性質を利用。 =(-6)=-2 3 であるから (2) lim(√2+an+2-√n-n) n→∞ =lim n→∞ (n²+an+2)−(n²−n)) =m=mil √√n²+an+2+√√n²-n ((a+1)n+2 mi =lim →∞ =lim- n18 √netan+2+√n²-n (a+1)+- 2 n 12 n ==a+1 2 (税込) 分母分子に √n²+an+2+√n-n を掛け,分子を有理化。 1分母分子をnで割る。 子をnで割る。 'n> 0 であるから n=√ a 2 n 1+ + + 1 n² よって, 条件から a+1 =5 2 Ma=9 したがって {a.l. αの方程式を解く。

未解決 回答数: 1
数学 高校生

解法1で、a2を調べなくても良いのはなぜでしょうか?

472 重要 40 =f(n)an-, 型の漸化式 00000 | a1=113 (n+1)a=(n-1)a- (n≧2) によって定められる数列 (a)の一般 を求めよ。 n -1 指針 与えられた漸化式を変形すると Anm an-1 n+1 an=f(n) (f(n-1)an-2) [類 東京学芸 これは p.471 基本例題 39 に似ているが, おき換えを使わずに,次の方針で解ける [方針1] an=f(n) an-1 と変形すると これを繰り返すと an=f(n)f(n-1)...... (2) a よって,f(n)f (n-1)......f (2) はnの式であるから, am が求められる。 [方針2] 漸化式をうまく変形してg(n)an=g(n-1) α-」 の形にできないかを考え る。この形に変形できれば g(n)an=g(n-1)an-1=g(n-2)an-z==g(1)a, であるから, an= g(1)ai g(n) として求められる。 解答 1. 漸化式を変形して 解答 n-1 n+1 an= an-1 (n≥2) n-1 n-2 ゆえに an= an-2 (n≥3) n+1 n これを繰り返して n1.n-2.n-3. an= n+1 2-1 n n-1 32 54 3 よって an= (n+1)n2 すなわち an= 1 ① n=1のとき n-l an= n+1-1 n-2 n+1 n a-t n-2 n+1 72 n-3 n(n+1) 1 1-1+1)=1/12/ a=1/2 であるから,①はn=1のときも成り立つ。 解答 2. 漸化式の両辺に n を掛けると よって したがって (n+1)nan=n(n-1)an-1 (n≧2) (n+1)nan=n(n-1)αn=......=2・1・α=1 1 an=n(n+1) <n+1とn-1の間にあ るnを掛ける。 数列{(n+1)na.} は す べての項が等しい。 これは n=1のときも成り立つ。 練習 a₁ = 0 求めよ。 (n+2)n=(n-1)an-1 (n≧2) によって定められる数列{a} の一般項を [ 類 弘前大]

未解決 回答数: 0
数学 高校生

次の青線の移行がよくわからないのですがどなたか解説お願いします🙇‍♂️

== 21 1 1 1 1 -m(m+1)(2m+1)+ -m(m+1) 2 6 2 2 n(n+2) (nは偶数) 2 (ア)(イ)より S₁ = 1/12 (n+1)= ( n は奇数) よって = == 10mm+1)(+2) 1 -m³ + m² 2 6 =1 ( 1 ・ma+ ·m² + 2 2m²+1/2m² 2 m=1 3 m) + 1 " n 1 -n² (n+1)₂ 1 4 26 n(n+1)(2n+1)+ 11 n(n 2 16 12 12 +1){n(n+1)+2(2n+1) +4} =1m(n+1)(n+2)(n+3) 12 1 2 1 1 16 12 m(m+1){(2m+1)+3) m(m+1)-2(m+2) -m(m+1)(m+2) 273 次の数列{a}の一般項および初項から第n項ま (1) 1, 11, 18, 22, 23, 21, ... (1) 数列{az} の階差数列を {6} とすると {6}:10, 7, 4, 1, 2, これは,初項 10, 公差 -3 等差数列であるか 6m=10+(n-1)(-3)=-3n+13 よって, n2のとき =1+2(- ) (2 272S=1・2-2・3+3・4-4・5+5・6-6・7+・・・+ (−1)+1n (n+1) を求めよ。 (ア) nが偶数のとき, n=2m (m= 1, 2, 3, ...) とおくと Sn = S2m = =(1·2-2.3)+(3・4-4・5) + (5・6-6・7) +..+{(2m-1).2m2m(2m+1)} 】{(2k-1)・2k-2k(2k+1)} k=1 (-4k) =-4・ 1/12m(m+1) =-2m(m+1) n n=2m より, m= 12 であるから 1-1 -1 =1-32k+ =1-3- k=1 13 (n-1)n+13(n-1) 1 (3m²+29n-24) n=1 を代入すると1となり, α に致する。 したがって = 1/12(3n+an-24) 初項から第n項までの和をSすると 1 S₁₁ = 3k²+29k-24) =1/12(-329-24) 6 n+1)(2n+1)+29 ={(n+1)(+1)-29(n+1)+ 1 n(2n²-26n+ 4 n(n²-13n+10) - SN = − n ( 1/2+1) n(n+2) (イ) nが3以上の奇数のとき, n=2m+1(m= 1, 2, 3, ...) とお くと S=S2m+1=Szm+(2m+1)(2m+2) Emm 1)+\am + 1)(m2) =2(m+1)^ n-1 n=2m+1より, m= であるから 2 n- Sw=2("21+1)=1/2(n+1)* n=1 を代入すると2となり, S=1.22 に一致する。 nの式で表す。 (ア)の結果を利用する。 S2m を用いるから, nを 3以上の奇数とした。 (2) 数列の階差数列を {6} とすると 6}: 1, 2, 4, 8, 16, : これ初項 1, 公比-2の等比数列であるから bn=1(-2) -1 = (-2)"-1 よって, n≧2のとき an = 1+ (-2)*-1 1.{1-(-2)^-1} =1+ 1-(-2) = {4 3 11/12/14-(2)-1}

解決済み 回答数: 1