学年

教科

質問の種類

数学 高校生

数Ⅱ 軌跡を求める問題です。 写真の解説一行目で、基本例題98ではいつも使っている文字としてP(x,y)としたのですが、PR98でPの座標をP(x,y)としたら間違っていて、x,y以外の文字にする、と書かれていました。 2つの問題の違い、なぜPR98の問題でP(x,y)と置... 続きを読む

基本 例題 98 曲線上の動点に連動する点の軌跡 DACTICE (木) 98 thehet 1 00000 点Qが円x+y=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 CHART & SOLUTION 連動して動く点の軌跡 p.158 基本事項 1 つなぎの文字を消去して、 x yだけの関係式を導く ...... 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件を s, を用いた式で表し, P, Qの関係から, s, tをそれぞれx, yで表す。 これをQの条件式に 代入して,s, tを消去する。 解答 Q(s, t), P(x,y) とする。 x+y=9上の点であるから Pは線分AQ を 2:1 に内分する点であるから s2+t2=9 13 ① (s, t) 2- A 1・2+2t 2+2t Q (1,2) 3 -, y= 2+1 3 -3 0 1・1+2s 1+2s x= 2+1 よって s=3x21.t=3v22 2 ●これを①に代入すると (321)+(3x-2)=9 ゆえに (12/21)+(1/2)=9 よって(x-1)+(y-22-4 =4 ...... ② したがって, 点Pは円 ②上にある。 逆に円 ②上の任意の点は,条件を満たす。 以上から、 求める軌跡は 中心 2) 3'3' 半径20円 P(x,y) つなぎの文字 s, tを消 去。 これによりPの条 件(x, yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y^2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) = 0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。 RACTICE 982 放物線y=x2 ① とA(1,2), B(-1, -2), C(4, -1) がある。 点Pが放物線 ①上を動くとき、次の点Q, R の軌跡を求めよ。 (1) 線分APを2:1 に内分する点Q (2) △PBCの重心R

解決済み 回答数: 1
数学 高校生

指針の四角1、2までは分かるんですが、四角3の“②をθ軸方向に3分のπだけ平行移動”というところがどうしてそうなるのか分かりません。2分の1でくくってあるから、掛けて、6分のπだけ平行移動させたくなります、、2分の1はなぜ無視して3分のπだけになるのでしょうか?教えてくださ... 続きを読む

基本 例題 141 三角関数のグラフ (2) 関数 y=2cos| 00000 s(12-16)のグラフをかけ。また,その周期を求めよ。 基本 140 指針 基本のグラフy=cos0 との関係 (拡大・縮小, 平行移動)を調べてかく。[] y=2cos π π os(12/28-1/6)より,y=2cos/1/20-1/3)であるから、基本形y=cos をもとにし てグラフをかく要領は,次の通り。 1 y=cose を 軸方向に2倍に拡大 →y=2cos ② ①を 0軸方向に2倍に拡大(12倍は誤り) y=2cos/12 0 ③②を軸方向にだけ平行移動 → ① ② π →y=2cos 0- 3) 2 3 注意 y=2cos (12/17)のグラフがy=2cos 1/2のグラフを軸方向にだけ平行 6 2 229 移動したものと考えるのは誤りである。 CHART 三角関数のグラフ 基本形を拡大・縮小,平行移動 π 答 2 y=2cos (1) =2c0s1/12 (87) 10の係数でくくる。 JOHA 1 よって, グラフは図の黒い実線部分。 周期は2÷ =4T = 2 | y=cos の周期と同 Cas tan 9. ・傾き YA じ。 3y=2cos (0-1) 0 ② y=2cos2 2 2 2 π 今 3π -3-2- 14-3- イ π T 一π π 2 22 |3- 0 π π 2 π 2π I 1 2TT 3π |52| 10 I 13 L -72 19-21 E 2 --- 1 4π π 333 13 π 8 0軸との交点や最大・ 最小となる点の座標を チェック。 (-.0). (2 7 ・π,

解決済み 回答数: 1