学年

教科

質問の種類

数学 高校生

青チャート数Ⅱ、EX101です。どれも解答を読めば理解はできるのですが、公式をどのように選べば良いかわかりません。 (1)は2倍角、3倍角公式で解こうとして、 (2)はcosθで括ってから合成をしようとして、 (3)は√2(sinx + cosx) を合成しようとして、 ... 続きを読む

50 スマー の例題 入の方 [解] の2 青チ チ 八重お種学問 ■日 A 選び あり 考 例 間 え・ ど [ デ 270 I EXERCISES 100nを自然数を実数とするとき, 次の問いに答えよ。 (1) cos(n+2)0-2cos@cos (n+1)0+cosn0-0 を示せ。 (2) cos0xとおくとき, cos50 をxの式で表せ。 (3) cos' の値を求めよ。 26 三角関数の和と積の公式. 101 (1) sinx+sin 2x+sin 3x cosx+cos2x+cos3x 人(②2) 050<1とする。 不等式0<< sinocoso+cos²0 < 1 を解け。 (3) 05x<2のとき、方程式 sinxcosx+√2 (sinx + cos.x)=2 (3) 弘前大) 12/12 とするとき、次の問いに答えよ。 27 三角 (1) tan0x とするとき, sin20, cos20 をxで表せ。 (2) xがすべての実数値をとるとき, p= 7+6x-xl 1+x ア (1) の結果を用いて, P を sin20, cos20 で表せ。 (イ))の結果を用いて, Pの最大値とそのときのxの値を求めよ。 IN とする。 a 103 の方程式 sinx+2cosxk (0sxm) が異なる2個の解をもつとき の値の範囲を求めよ。 [愛知] G ②104 関数f(0)=acos0+(a-b)sinocos0+bsin²0 の最大値が3+√7, 3-√7 となるように,定数a, bの値を定めよ。 CORMAS 102 (1) cos'01 105 平面上の点Oを中心とし、 半径1の円周上に相異なる3点 , B, C △ABCの内接円の半径は1/3以下であることを示せ。 京都 104 105 100 (1) 左辺の2cos@cos(n+1)0. 積和の公式を利用して変形。 (3) 6 7 x として (2) の結果を利用。 101 (1) 三角関数の合成と、和積の公式を用いて、 積=0の形に変形。 (2) sin@coscou'eは2次の次式であるから、20の三角関数で表され (3) sin.x+cos.x=tとおく。 の値の範囲に注意。 1+tan 1+² (2) (1) 結果 ① を利用。 103 三角関数の合成を利用。 f(x)=sinx+2c0sx として, y=f(x)のグラフと なる2つの共有点をもつ条件を考える。 )の右辺は、2次の同次式であるから、20の三角関数で表すことができる。 AABCの内心を1とすると ICsin IDC において、正霊定理から得られる等式を利用して、 rを 1 174 数学Ⅱ よって x0であるから ゆえに ここで, 0 すなわち (16x20x²+5)=0 EX €101 これを満たすxの値は 16x20x²+5=0 10± √10-16.55+√5 よって 求める値は 10 t < cos<cos' <cos³0 16 ゆえに (1) 0のとき、次の方程式を解け。 (1) P (左辺) (右辺) 5+√5 8 8 よって sinx+sin 2r+sin3x-cosx+cos 2x+cos3x (2) とする。 不等式√ sincom0+cos0を解け。 (3). DEx 240LB, IlliCsinxcor+/Z(sinx+cox)= ¢H = (sinx-cos.x)+ (sin2x-cos2x)+ (sin3x-cos 3.x) -√2 (sin(x-7)+sin(2x-7)+sin(3x-7)} ここで,sin(x)+sin(3x-4) 2sin (2x-4) cons.x であるから P=√2 (2 cosx+1)sin(2x-4) したがって、方程式は (2 cos x+1)sin(2x-)-0 cosx/12/2… ① または sin (2x-4) -0... ② xの範囲で、①を解くと x 12/23 また、xから この範囲で②を解くと 2x-4-0, z x すなわち x 12/23 したがって、求める幅は4001/12/12/10 (2)√3 sin cos0+cos²0= √3 + 1/cos 20 + 1/2 -sin20+ =sin(20+)+1/2 とみる。 $2√3 3+√5 5-√3 ←同じ を合成。 ←8- in/+ -2 si 1 +2=0+ b 0<sin(20+)+<1 - <sin (20+4)</ すなわち 20 とおくと、00のと この <sint</1/2を解くと 1/12 くたく/7/2 ゆえに 1/20/8/1/2 すなわち書くの (3) sinx + cosxとおき、両辺を2乗すると fsin'x+2sinxcosx+cos³x よって 不等式は よって sinxcosx ゆえに、方程式は221-2-0 21+4√21-5-0 (√21-1)(√21+5) - 0 整理すると ゆえに したが ここで 1-√2 sin(x+4) よりであるから -√2 515√2 よって、①のうちするものは 15212 √2 sin(x+4)= sin(x+4)= ②から よって1/12 17/12/0 EX 102 とするとき、次の問いに答えよ。 (1) tunxとするとき, sin2020 で表せ。 (2) xがすべての実数値をとるとき、とする。 いて、 Psin2/cos20 で表せ。 (1) cos201 イの結果を用いて、 の最大値とそのときのxの値を求めよ。 であるから 1+tan0 1+x² sin20-2sin0 cos 02 (tan cos 0)cos0 2x 1+x1+x² =2tan/cos²0=2x. cos 20=2 cos³0-1-21 1-x² -1=1+x² ● 数学 175 おき換え が変わることに注意 ix, cox MBR f-stax +con おき換えを利用。 の公式で解くと MITWE ←EABROOK 変数のおき換え が変わることに注意 MCMAS ←相互開催 ←i sind -tan feos 4章 EX

回答募集中 回答数: 0
数学 高校生

8.2 このように原点を用いて考えてもいいですよね??

396 基本例題 8 座標とベクトルの成分… 平行四辺形の頂点 ①000 ... 3 A(1, 3), B(3, -2), C(4, 1) ³3. (1) AB, BC. CA の成分と大きさをそれぞれ求めよ。 , D (2) 四角形 ABCD が平行四辺形であるとき, 点Dの座標を求めよ。 (3)(2) の平行四辺形について, 2本の対角線の長さを求めよ。 指針▷ (1) O を原点とする。 A(a, a2), B(by, b2) A(0,2²) OA = (a1,a2),OB=(b1,62) であり (2) AB-OB-OA ←後前ととらえると イメージしやすい p.392 基本事項 ④ 基本47 =(bi-α, b2-α2) |AB=√ (b₁-a₁)²+(b₁-a₂)² (2) 四角形 ABCD 平行四辺形 であるための条件は AB=DC - AB=CD ではない! 成分で表す。 SE=1S-F B C [補足] AB=DČのとき、辺ABと辺 DC は平行であり, |AB|=|DC | から2辺AB, すなわ ゆえに あることの条件)ことがいえる。 平 (3) 対角線の長さは |AC|,|BD| である。 (1),(2) の結果を利用。 よって, (1) から また, (2) から よって, 1組の対辺が平行でその長さが等しい(平行四辺形で DCの長さが等しい。 AB=DC BC=(4-3, 1-(-2))=(1,3), |BC|=√1+32=√10 CẢ=(1–4, 3–1)=(−3, 2), |CA|=V(-3)+2=/13 | # い。 (2) D の座標を(α, b) とする。 AND YA 四角形 ABCD は平行四辺形であるから よって ゆえに (2, -5)=(4-a, 1-6) 2=4-α, -5=1-6 a=2, b=6 したがって これを解いて (3) 2本の対角線の長さは |AC|,|BD| である。 |AC|=√13 -0)-8 D(2, 6) (1) AB=(3-1,-2-3)=(2,-5),|AB|=√22+(-5)=√/29(2) AB=DCの代わりに AD=BCなどを考えても = A(1,3)。 A O B(bb) D(a, b) PC(4,1) B(3,-2) |BD|=√(2−3)+{6-(−2)}^= =√65 [注意] 上の例題 (2) で, 「平行四辺形ABCD」 というと1通りに決まるが、 「 4点 A, B,C,Dを れる (下の練習 (2) 参照)。 点とする平行四辺形」 というと1通りには決まらずに、全部で3通りの平行四辺形が考えら EDを見

回答募集中 回答数: 0
数学 高校生

175.2.3 答えを導くまでの記述に問題はないですよね?

したもの 点のx座 すると、 5 x=-1 gcb gea loga.M+I x=1 から ニ t 基本例題 175 対数の大小比較 | 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, 10g35 点のx座標 ALUMIST 指針 対数の大小比較では, 次の対数関数の性質を利用する。 a>1©¢\0<p<q⇒loga p<loga q 大小一致 0<a<1のとき 0<p<glogp>logag 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し, 底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 係をいた 【CHART 対数の大小 底をそろえて 真数を比較 解答 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 貸付 (3) (3) 4数を正の数と負の数に分けてから比較する。 また, 10g32, 10g52の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (1) 1.5=2=log:3=log:31 ** (31)²-3¹-27>5² また 底3は1より大きく35であるから log332>log3 5 したがって 1.5 >log35 (2) 22102210g222=10g24, log49= 底2は1より大きく, 3 <4<5であるから log23 <1024 <1025 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1 であるから logo.53 <logo.52 < 0 log52= 1 log32= log23 1 <3 < 5 であるから よって すなわち したがって 0 log25 log23² 10222 -=10g23 0<log23<log25 1 1 log25 10g23 練習 2175 (1) 10g23, 10g25 logaq 1 logapty 0 0<log52<log32 logo.53<logo.52 <logs 2 <log:2 で, 底2は1より大きく, S YA a>1 次の各組の数の大小を不等号を用いて表せ。 (2) 10go.33, 10go.35 p 00000 y=logaxのグラフ gx y 0<a<1 10gap OP logag Syz 底はそろえよ <A> 0, B>0ならば A>B⇒A²>B² 底の変換公式。 9 不等号の向きが変わる。 <指針のy=logaxのグラフ から, α>1のとき 0<x<1⇔logax < 0 x>1⇔10gax>0 0<a<1のとき 0<x<1⇔10gax>0 x>1⇔logax < 0 p.293 EX113 (3) logo.54, log24, log34 x 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

不等号の下に=がどういう時に付くのかがよくわかりません

例題129 三角関数 0≦0 <2のとき、次の不等式を解け. (1) 2 sin 02-1 (8 (2) 2 cos > IS 解答 (1) 2sin≧-1 より, sin0= - 考え方 三角関数を含む不等式は,まず「=(イコール)」とおいて,方程式を解くとよい あとは、例題128 (p.253) と同様に考える. ここでは単位円を用いて考えてみる =! よって、 右の図より、 7 11 osos, r≤0<2n <2π 6 (3) tan0≥-√3 5 より、0, (2) 2 cos >√3 h, cos 0>. √√3 cos0= より 2 よって、 右の図より sin 02 11 17/11/1/2π TC 6 6 11 0≤0<n<0<2n 6' л≤0<2n √3 2 11 -π 匹 6'6 7.11 tan0=-√3より.8=12/21. 1/23 5 よって、 右の図より 37 π 2 2' 3 1 2 9 17 15 3 (3) tan O -1 T 11 6 例題129 をグラフで考えると次のようになる. (1) YA (2) YA y=sine /color] 「53 -1 -√3- 1 O .7 6 π 6、 -TC TC y=coso 12 0 ale=0.4 √√3 2 1x 12 上 x AX x **** -√3 「まず 「=」とおいて入 程式を解く. 直線y=-12 より上り 0≦0.2より、2を 含まないことに注意す る. まず「=」とおいて 程式を解く. 0キ 直線x= 11 1/7<0</20 <θ< √3 しない まず「=」とおいて 程式を解く. 傾きが-√3よりも大 きい. (3) YA T 3 三角関数を含む不等式は、 まず 「=(イコール)」 とおいて、方程 式を解くの増加に伴い, sin 0, cos 0, tan 0 の値はどのよう に変化するか単位円を用いて考える Bo 回単 2'2" に注意する. より πであること by=tand F

回答募集中 回答数: 0
数学 高校生

なぜGはK1上にあると言えるんですか?

)を通る。 ただい ♪ 座標が である (配点 解法集 71 7² 1 68 カ 中心が点C(イコウ) ), 半径が 座標平面上に2点A(-7, -9), B (1, -1) がある。 2点A,B からの距離の比が3:1である点Pについて考える。点Pの軌跡をK」とする。 線分 AP, BP には長さについて、 アの関係が成り立つから, K, は オの円 である。 1については、当てはまるものを、次の①~⑤のうちから一つ選べ。 ア AP=2BP 11 2AP = BP AP = 3BP (4) AP = 4BP (5 4AP = BP ③ 3AP=BP 難易度 ★★★ 次に、三角形 ABP の面積が最大となる点Pについて考えよう。 な直線がK」 に接するときの接点である。 また, 点 3辺AB, AP, BP のうち,長さが一定であるものを底辺とすると,高さが最大であるとき,面積は 最大である。 このとき点Pは直線AB に カ Pは点 キ を通り, 直線AB に |な直線とK」 の交点とみることもできる。 よって、面積が最大となるのは、点Pが点D(ケコ] 一致するときである。 ク 1)または点E(シ], ク 目標解答時間 12分 垂直 キ の解答群 ⒸA ① B SELECT SELECT 90 60 カ については,当てはまるものを、次の各解答群のうちから一つずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 ク |の解答群 平行 C セ さらに、三角形DEQの重心の軌跡が Ki から2点D, E を除いた部分であるとき, 点Qは 円K2: x2+y2- x タチツ=0 上にある。 と 400 (配点 15 ) 【公式・解法集 70 71 75 方程式 図形と

回答募集中 回答数: 0
数学 高校生

この問題は排反事象ではないですか?

328 00000 赤,青,黄の札が4枚ずつあり,どの色の札にも1から4までの番号が1つずつ 練習 確率の計算 (3) 基本例題 38 (埼玉医大) 書かれている。 この12枚の札から無作為に3枚取り出したとき,次のことが起 (3) 色も番号も全部異なる。 こる確率を求めよ。 (1) 全部同じ色になる。 (②2) 番号が全部異なる。 指針 場合の総数N は、 全部で4×3=12 (枚) の札から3枚を選ぶ 組合せであるから 12C3通り あり、どの場合も同様に確からしい。 そして, (1)~(3) の各事象が起こる場合の数αは, 積の法則を利用して求める。 (1) (同じ色の選び方)×(番号の取り出し方) ( 2 ) (異なる3つの番号の取り出し方) × ( 色の選び方) (3)(異なる3つの番号の取り出し方) × (3つの番号の色の選び方) 取り出した番号を小さい順に並べ、それに対し,3色を順に対応させる,と考える。 「(赤,青,黄),(赤,黄,青),(青,赤,黄), *. 例えば、3つの番号 ①1 2 3 に対し 1 つまり, 取り出した番号1組について, 色の対応が3P 3 通りある。 1 解答 12枚の札から3枚の札を取り出す方法は 12 C3 通り (1) 赤, 青, 黄のどの色が同じになるかが 3C通り その色について,どの番号を取り出すかが 4通り ゆえに, 求める確率は (2) どの3つの番号を取り出すかが 4C3通り そのおのおのに対して、色の選び方は3通りずつあるから, 番号が全部異なる場合は 4C3×33 通り +86-21 ゆえに、求める確率は 3C1X4C3 12C3 4C3 X 3³ 12C3 3×4. 3 1220 55 p.324 基本事項 4×27 220 220 27 55 ...... 6 55 同じ色でもよい。 IS> (3) どの3つの番号を取り出すかが 4C3通りあり, 取り出した 赤, 青,黄の3色に対し, 3つの番号の色の選び方が3P 3通りあるから、色も番号も全 部異なる場合は 4C3×3P3通り ゆえに、求める確率は 4C3×3P3_4×6 12C3 = 検付 (1) 札を選ぶ順序にも注目し, N=12P3=12C3×3!, a=3C1×4C3×3! と考える となり 左の解答の式と一致する。 3つの番号それぞれに対し, 3つずつ色が選べるから 3×3×3=33 と, a 3C1X4C3 N 12C3 1,2343つの数を 選んで対応させる,と考え て, 1×4P3通りとしてもよ 音 ((1) (1)

回答募集中 回答数: 0
数学 高校生

・(1)、(2)の解き方はこの方法でも合っているか ・(3)の黄色マーカーのところで、なぜ3C2なのか。  4C3じゃないのか。 ・3C2は赤1と赤2をひとつの塊として考えて、残り 2  個を選ぶという解釈で合っているか ・(3)で、なぜ青と赤を区別しているのか がわかり... 続きを読む

個を選び1列に並べる。 この並べ方は全部で何通りあるか。 EX (1) 赤色が1個, 青色が 2 個, 黄色が1個の合計4個のボールがある。 この4個のボールから (2) 赤色と青色がそれぞれ2個, 黄色が1個の合計5個のボールがある。 この5個のボールか ら4個を選び1列に並べる。 この並べ方は全部で何通りあるか。 (3) (2) の5個のボールから4個を選び1列に並べるとき, 赤色のボールが隣り合う確率を求め よ。 (1) 3個のボールの選び方は,次の [1]~[3] の場合がある。 [1] 赤色1個,青色2個 [2] 青色2個,黄色1個 [3] 赤色1個,青色1個,黄色1個 このおのおのの場合について, ボールを1列に並べる方法は 3! [1] =3 2! =3(通り) [3] 3!=6 (通り) 3! [2] -=3(通り) 2! 3+3+6=12 (通り) よって, 並べ方の総数は (2) 4個のボールの選び方は,次の [1]~[3] の場合がある。 [1] 赤色2個,青色2個 (188 28 [2] 赤色2個,青色1個, 黄色1個 [3] 赤色1個,青色2個, 黄色 1個 このおのおのの場合について, ボールを1列に並べる方法は 4! 269 [3] 2 -=12 (通り) 4! [1] -=6(通り) [2] 112通り 2!2! (FD) 20 JEIS よって, 並べ方の総数は 6+12+12=30 (通り) (3) 5個のボールを赤1, 赤2, 青 1, 青2, 黄とし, すべて区別し て考える。 5個のボールから4個を選び1列に並べる方法は 5P通り 赤,赤2を含むように4個のボールを選ぶ方法は C2通り このとき, 赤,赤が隣り合うように並べる方法は,まず, 赤, 赤を1個とみなして3個のボールを1列に並べる方法が 3!通り そのおのおのについて, 赤, 赤2 の並べ方が2通りあるから [ミュー] 3!×2=12 (通り) よって, 赤, 赤2 が隣り合う並べ方は全部で 3C2×12=36 (通り) 36 5-4-3-2 したがって、求める確率は 36 5P4 3 10 [中央大〕 ← [1], [2] は同じものを 含む順列。 ←同じものを含む順列。 ←確率では、 同じもので も区別して考える。X3 TE 隣り合うものは枠に入 されて中で動かす 2章 [[[確率] EX

回答募集中 回答数: 0