学年

教科

質問の種類

数学 高校生

マーカーの部分を教えてください

08 基本 例題 65 最大・最小の文章題 (2) 0000 座標平面上で、点Pは原点Oを出発して、x軸上を毎秒1の速さで点(6 まで進み、点Qは点Pと同時に点(一般)を出発して、毎秒1の速さで 0まで進む。この間にP,Q間の距離が最小となるのは出発してから何 か。 また、その最小の距離を求めよ。 CHART SOLUTION 解答 ✓f(x) の最大・最小はf(x)の最大・最小を考える 基本 t秒後のP,Q間の距離をd とすると, 三平方の定理からd=f(t) の形にな る。ここでd> 0 であるから,d=f(t)が最小のときdも最小となる。 出発してからt秒後のP, Q 間の距離 を dとする。 P, Qは6秒後にそれぞ れ点 (6,0,0,0)に達するから 0≤t≤6 ...... ① このとき, OP=t, OQ=6-t である 6- TUAN JS x ◆ tのとりうる値の範囲 点Qのy座標は t-6 から, 三平方の定理により -6 d=t+(6-t)2=2t-12t+36 =2(t-3)2+18 よって、①の範囲の tについて, d2 は t=3で最小値18 をと る。 d> 0 であるから,このときも最小となる。 ゆえに、3秒後にP, Q間の距離は最小になり、 最小の距離は 18=3√2 である。 ◆軸t=3は①の範囲内 この断りは重要! 81-38 INFORMATIONdの大小はdの大小から らdが最小のときも最小に 右のグラフから ずその最小値を求めている。これはd>0でdが恋 例題では,d=√2+62の根号内のα+62 を取り出して,ま y Lv=5

未解決 回答数: 1
数学 高校生

黄色マーカーのところで、 なぜα^2が虚数だと言えるのですか? また、なぜα^3は虚数じゃないんですか? 教えてほしいです。

【4】 b を正の数としの2次方程式 bx+1=0が虚数解 α をもつとする。次 の問いに答えよ。 (1)ものとり得る値の範囲を求めよ、 (2) (3) 次の条件 (1) (II)をともに満たす 3次方程式が存在するようなもの値をすべて求め α α をそれぞれ Aα+ B (A, B はもの多項式) の形で表せ. 32 よ (I) 係数はすべて実数である。 実数に、宗教、共役な複素数 (II)α2 とαの両方を解にもつ。 (40点) x²-bx+/- 考え方 (1) 判別式の符号を考えましょう。 (2)xαが方程式f(x)=0の解であることは, f (α) =0が成り立つことと同値です. (3) as は虚数となるので、条件(1) (I)をともに満たす3次方程式が存在するとき、その3次方程式は虚数解を2個も ち、それらの虚数は互いに共役となります。”も解ですから、がと共役かどうかで場合分けをしましょかも x2-bx +1=0 【解答】 (1) ①の判別式をDとすると D=(-b)2-4.1.1=62-4=(b+2)(b-2) ax+bx+cx+d=o abc.da 無の和 2解を α + + 8 = a だったら、係数 ......① x + 3 + 8 x - 右ができ が成り立つ である実数係数の2次方程式 ① が虚数解をもつのでD0,すなわち 2<b<2であり,これと60よりものとり得る値の範囲は 0<b<2 である. ......② (答) (2) αは①の解であるから α-ba+1=0 が成り立つ. よって a²=ba-1 であり,③を用いると α = α α2 =α(ba-1) ......③ (答) a 2-えがのだったり、又は2 =bba-1)-α =(2-1)a-b 2つが消えるような数 3次代の解はPic で、答えは実数になるということは、 共役な複素数をもつ数が目にある xxbx + 1 で割ることに x3 = (x2-bx+1)(x+6) +(62-1)x-b ・・・・④ (答) となる. でくる が得られる.これにx=αを代 入してもよい. 解説 1° 実数係数の方程式 (3) αは虚数であるから, a α = α (1-α) ¥0 である. よって、α キαで あるから, (II)を満たす3次方程式の3つの解のうち2つはα αである. また,αは虚数で, 60であるから,③ より αは虚数である,よって,(I), (II)をともに満たす3次方程式は と共役な複素数(キα2)も解にもつの で、もう1つの解をすると (7) B= a²) が実数 (1) a³ = a² のいずれかが成り立つ かがの共役な複素数 バー(一) 共役な複素数という意味 (ア)のとき, α2+β=a2+αであるから,α2 +βは実数である.また, は実数であ と虚数解 X, Y を実数とし、 |α = X + Yi とすると, α = X-Yi であるから a² + a² = 2X となる. よって, α2 + α は実 数である. 解説 2°解と係数の関係 (I)と解と係数の関係よりα + α + βも実数である. よって るから,④と② より すなわち b2-1 = 0 かつ 0<b<2 (610-6 再 だから、を消したい! →6210であればOK ー ②数13- b2=1 Ocbc2より b=1

解決済み 回答数: 1
数学 高校生

18(2)がわかりません 解説お願いします

[18 [2021 九州大] 座標平面上の3点 0 (0, 0), A (1, 0), B(0, 2) を考える。 (1) 三角形 OABに内接する円の中心の座標を求めよ。 (2)中心が第1象限にあり, x軸と軸の両方に接し, 直線ABと異なる2つの交点を もつような円を考える。 この2つの交点をP, Q とするとき, 線分 PQ の長さの最大 値を求めよ。 (2)円の半径をR とすると, 中心の座標は (R, R) である。 直線AB の方程式は y=-2x+2 すなわち 2x+y-2=0 よって、円の中心と直線ABの距離をとす ると d= 12R+R-21_13R-21 = √√22+12 √5 円が直線AB と異なる2つの交点をもつとき, d<Rであるから |3R-2| √5 <R 両辺は正であるから, 両辺を2乗して整理す ると R2-3R+1<0 B≤0 よって 3-√5<R<3+√5 ① 2 2 このとき,三平方の定理により d+ =R2 よって PQ2_16 16 (R2-3R+1) 5 右辺を整理して PQ-16-232-24 B2 2 P (R, R) 1 A x 422-4123R+1) 1228-4 PQZOであるから,R=2のときPQも最大で,最大値は したがって、①においてPQはR=2のとき最大値-18(-2)=4をとる。 2 すなつ よって, cは−1の約数となり ゆえに,f(-1) = 0から すなわち a²-262-1=0 (1) より α2=3m+1,62=3n よって 3(m-2n)=2 m-2n は整数であるから, 2 したがって、f(x) =0を満た (3) f(x)=0 の有理数解, は有理数であるから,互い p0 である。 更に,(2)よりは整数では f(r)=0 から 2m3+azy2+ すなわち よって したがって 2(2)² + a² 2q3+apa d2a2+a2 pgは互いに素であり、 ①に代入して整理すると すなわち 2=pp²+ よって、 は2の約数とな ②に代入して整理すると すなわち (a+26Xa a,b は整数であるから, よって (a+2b, e したがって (a, b)=( これらは a, b が3の倍

解決済み 回答数: 1