学年

教科

質問の種類

数学 高校生

この問題についてです。dx/dθだけ求めてグラフを書けるのはなぜですか?dy/dθを求める必要はないのでしょうか?

16 重要 例 191 極方程式で表された曲線と面積 00000 極方程式 r=2(1+cos) (0ses)で表される曲線上の点と極Oを結んだ線 分が通過する領域の面積を求めよ。 指針 極方程式=f(6) を直交座標の方程式に変換して考える。 極座標 (r, 6) と直交座標 (x, y) の変換には、 関係式 ・基本 182. 数学 Cp.303 参考事項 x=rcos0=f(0) cos 0, y=rsin0=f(0)sino を用いて, x,yを0で表す。 →x,yが媒介変数日で表されるから,基本例題182と同様に置換積分法を用いて 計算する。 曲線上の点をPとし、点Pの直交座標を (x, y) とすると 解答 x=rcos0=2(1+cos 0 ) cos 0 y=rsin0=2(1+cos 0)sin0 6=0 のとき (x,y)=(4,0), 0= 6=1/2のとき (x,y)=(02) において y≧0 x,yを0で表し、 まずは 曲線の概形を調べる。 dx また =2(-sin)・cos0+2(1+cos6)・(-sin) de =-2sin0(1+2cos0 ) dx 0< 001のとき、 < 0 である y4 0= 注意 y は 0 = 1/35 におい から, 0に対してxは単調に減少 r=2(1+cos) 2 0=0 する。 10 よって, 求める図形の面積は, 右 て極大となるが,解答では, | 面積を求めるために必要な, 図形の概形がわかる程度に 調べればよい。 の図の赤く塗った部分である。 0 xと0の対応は右のようになるか ら, 求める面積をSとすると s=Sydx dx x 0 → 4 →0 ここで ded do -S2(1+cosd)sino・(-2sin0)(1+2cos0)de =4f (sin°0+3sin'@cos0+2sin°Ocos"0)d0 Sain³ Øde-1-cos 20 do sin20d0= 2 = [sin 201 = 置換積分法。 dx ひも も0の式で表 do されるから 0での定積 分にもち込む。 半角の公式。

未解決 回答数: 1