学年

教科

質問の種類

数学 高校生

より、からの15+6t=10+9tの前の式からこの式になぜなるのか分からないので教えてください。

C1.53 空間のベクトルのなす角 COME とのなす角が等しくなるような実数t の値を求めよ。 小量 a=(4, 0, 3), b=(1,2,2),c=a+th について、とのなす角と 例題 解答 lal=√4°+0°+3°=5 |1|=√1242°+2°= 3 tab=4·1+0·2+3·2=10 ことのなす角をa.cとのなす角をAとすると、COS COSB-10 ca だから, c.b Tellal clo を満たす. 両辺に共通なので,c を計算する必要はない. こを成分で表さなくても... ディここで,c=a+1より Focus a(a+tb) a=lal²+ta·b =25+ 10t より, Sn+de+25+10t __cb=(a+tb)·b=a·b+t|b³|² =10+9t ことのなす角とことのなす角が等しくなるとき ca cb - Tellal Fello ##(0)9 3&50 15+6t=10+9t よって, 10+95 cl·5c-3eti nda 40 t= 3 **** ca Telläl を用いて表せばよい。 . t=3 à + 3/2b £₁ 1 = ²3² よって、より 50/3 c-b cb1 a=(a, a2, 3); = (bı,b2,63) のとき ab=abi+ab+a3b3 £=5;ð $=0-53)=131|18\ a=(a, a2,a3),i=b, b, bs) のときaとのなす角を0 ab abı+ab+a3b3 とすると, cos0= a√²+a₂²+a³√b²+b₂²+b³² 注》角の二等分線を作るには、2つのベクトルの長さをそろえて足せばよい。 41 5+ 6+ ことのなす角を α, ことのなす角をβと すると, cosa-=- 例題 C1.53 の場合,|a| = 5,1=3より方をすればフリー ともに長さが5となる. ca_) Tellal cos β= Tellol COS α = cosβ を満たす. C1-105 言 2 FREN 第4章

解決済み 回答数: 1
数学 高校生

16. このような記述でも問題ないですか??

・定めよ 通りの方 法 法 真の係 これ 基本例題 16 未定係数の決定(2) [数値代入法] 次の等式がxについての恒等式となるように,定数a,b,cの値を定めよ。 ax(x+1)+bx(x-3)-c(x-3)(x+1)=6x²+7x+21 の 〔京都産大〕 p.33 基本事項 指針▷係数比較法でもできるが, 等式の形から、数値代入法 を利用する。 恒等式は x にどんな値を代入しても成り立つから, a,b,cの値が求めやすいxの値を代 入する。 ただし,3つのxの値の代入でα,b,cの値は求められる(必要条件)が,この3つのxの 値以外でも成り立つかどうかは不明。よって,恒等式であることを確認する(十分条件)。 数値代入法を利用するときは,この点に注意すること。 019202 CHART 恒等式 1 展開して係数を比較 CHAOT) VIJJÄÄGI 代入法では,逆の確認か、(次数+1) 個の値での成立を述べる nas ( 解答 ! この等式が恒等式ならば, x= -1, 0, 3 を代入しても成り立つ。代入する数値は 0 となる項 x=-1を代入すると 46=20 が出るように選ぶ。つまり, x=0 を代入すると 3c=21 x=3 12a=96 p+pS¬)+³x(d == x(x-3)=0, を代入すると したがって (x-3)(x+1)=0 となるxの値を代入する。 逆の確認 このとき ゆえに,与式は恒等式である。 よって ②2 適当な数値を代入 a=8, b=5, c=7 b=5, c=7, a=8 (左辺)=8x(x+1)+5x(x-3)-7(x-3)(x+1) =8(x2+x)+5(x2-3x) -7 (x2-2x-3) =6x2+7x+21 ...... (+S)+(d-x(x+1)=0, つまり, 恒等式であること を確かめる。 35 1章 4 101 等式

解決済み 回答数: 1
数学 高校生

数1の二次関数の問題です。139と140の(3)(4)の解説お願いします🙏2、3枚目が答えです。答えを見ても理解できませんでした😭 追加:141もわからないです、なぜ最大値と最小値がないと分かるのですか??

ス 9 (3) ( 1x 6 不 (1) (2) 1 M 5 平 38 2 実数 1 指数法 14) (x+ 3 実数の (2) 0. Je (1) (+ 4 絶対 数学Ⅰ 4 0.77 5 1節/関数とグラフ 関数 (1) f(1) (5) f(a) Point ① 関数定義域、値域 定まるときはxの関数であるという。 yがxの関数であることをy=f が定義域内のすべての値をとるときのyの値全体を、この関数の値域という、 2つの変数x,yがあって、xの値を定めるとそれに応じての値がただ1つ 42" 関数 f(x) = ax +6 がf(-1) = 2, f (1) = 1 を満たしている。 B y=g(x) などと表す。 変数xのとり得る値の範囲を、この関数の定義域という ②象限 このとき次の問に答えよ。 (1) 定数 α, b の値を求めよ。 座標平面は座標軸によって4つの部分に分けられる。こ れらを右の図のように、 それぞれ 第1象限, 第2象限, 第3象限、 第4象限という。 ただし、座標軸上の点は (2) 値域が-1≦ f(x) ≧ 4 であるとき, 定義域を求めよ。 どの象限にも含まれないものとする。 2137 f(x)=x+x+41 のとき, 次の値を求めよ。 (2) * f (2) (3) f(3) (6)* f(-2a) (7) f(a-1) HA 136 次のうち、yがxの関数であるといえるものを選び,yをxの式で表せ。 半径がxcmの球の表面積をycm² とする。 ②正の実数xの平方根をyとする。 ③実数xの2乗に1を加えたものの逆数をyとする。 2 138 次の点はどの象限にあるか。 広万2 (1)(2,5) (2)* (1, -4) (1) y=2x-3 (1≦x≦3) (3) y=. 第2象限 (3) (-2,3) 140 次の関数のグラフをかいて、値域を求めよ。 また, 最大値、最小値があれば それを求めよ。 x-(x ≤-1) C 第3象限 第4象 1 (2) y=x²-x +--- (4) f(-2) (8) f(2a+1) ②141 次の関数のグラフをかいて、値域を求めよ。 また、最大値、最小値があれば, それを求めよ。 2126 (2) y=-x+2 (-2≤x≤2) y = 2x² (x ≥ −2) 例題 13 考え方 解 (1)* y=3x-1 (-1<x≦2) (3)*y=x+2 (-3<x<-1) 関数の値域 関数y=ax+b(-2≦x≦2) の値域が −3≦y≧5 であるとき,定数 α, の値を求めよ。 ただし, a < 0 とする。 (2) y=-2x+3 (-2≦x<0) (4) y=-x² (-1<x<2) 定義域の端の値-22と値域の端の値-3,5に着目する。 a<0 に注意する。 a < 0 のとき、xの値が増加するとyの値は減少する。 よって, x=-2のときy=5,x=2のとき y = -3 となる。 したがって (-2a+b=5 l2a+b=-3 これは a <0 を満たすから (4)* (-5, -7) 55.76 14 139 関数 y=f(x) の定義域を, f(x) を表す式が意味をもつようなxの値全体と144 * 関数 y=ax+b (3≦x≦5) の値域が −1 ≦y≦3 である。 考えるとき、次の関数の定義域はどうなるか。 a> 0,a=0, a<0 の3通りの場合に分けて、 定数 α, 6 の値を求めよ。 (1) y=√x これを解いて (1)*f(x) = (a = -2 lb=1 a=-2,6=1 (-2 (x < 1) (3x-5 (x ≥ 1) YA 143 次の条件を満たす定数a,b の値を求めよ。 (1) * 関数 y=ax+b-1≦x≦2) の値域が −5 ≦y≦4 である。 ただし, a>0とする。 (2) 関数 y=-2x+α (1≦x≦4) の値域が 6≦x≦3である。 (3) 関数y=ax+b(-5<x≦-1) の値域が −2≦y<2である。 15 -20 (2) f(x)=x² xx ② 145 関数 f(x) が次のように定められているとき, y=f(x)のグラフをかけ。 (x+2 (x-1) (−1≤ x < 2) 1-2x+8 (2≦x) 3 章 2次関数

解決済み 回答数: 1