学年

教科

質問の種類

数学 高校生

汚くて申し訳ないです💦 inf(写真下部)について質問です。 文章の理解はできたのですが、★部分をもう少し具体例で理解したいと思いました。例えばどんなものがあるのか教えていただけませんか?

トを問 4で外接する2円 0, 0' がある。 Aにおける共通接線上 点A の点Bを通る1本の直線が円0と2点C, Dで交わり, B 00000 明せよ。 を通る他の直線が円 0′ と 2点E, F で交わるとする。こ のとき, 4点C, D, E, F は1つの円周上にあることを証 OA OXF p.394,395 基本事項 3. 基本 82 403 CHART & SOLUTION 1つの円周上にあることの証明 方の定理の逆 4点が1 から、「べきの定理の逆」 を利用する方針で考える。 1つの円周上にあることは, 「円周角の定理の逆」, 「内角と対角の和が180°」, 「方べ の定理の逆」のいずれかを利用すれば示せるが,この問題では角度についての情報がな 4点C,D,E,F を通る円をかいてみると, 示すべきことが BC BD BE BF であること が見えてくる。 円0において,方べきの定理から B E ← 接線 BA, 割線 BD ←接線BA, 割線 BF BC・BD=BA2 円 0′において, 方べきの定理から 0 よって BE・BF=BA2 BC・BD=BE・BF ゆえに、方べきの定理の逆から、共 3 10 円と直線、2つの円 4点C,D,E,Fは1つの円周上にある。 に 内 inf 方べきの定理 PA・PB=PC・PD において PA・PB の値をべきという。ここで,円の半径をr とすると, [1] A 右図の [1] のとき PA・PB=PC・PD=(CO+OP)・(QD-QP) =(z+OP)(r-OP)=-QP2 [2] C D OP B B 右図の [2] のときは,同様の計算で PA・PB=OP2-r2 したがって, PA・PBの値は|OP2-2に等しい。OP2は, 点Pが固定されていれば一定の値である。すなわち 定点Pを通る直線が0と2点A,Bで交わるとき, PA・PBの値は常に一定である。 PRACTICE 90 金 円に、円外の点Pから接線 PA, PB を引き, 線分AB と PO の交点を通る円Oの弦 CD を引く。 このとき, 4点P,C, ODは1つの円周上にあることを証明せよ。 ただし, C,Dは P 足理 26 MI D B

回答募集中 回答数: 0
数学 高校生

数Ⅰの集合と命題の問題です。(2)に関して質問ですが、写真下部の(2)解説にa=6と出てきました。この6はどこから出てきたのでしょうか? もし(1)で求めたaの値の範囲であるa<-4, 6<aからだとしたらa=-4でx=-1も命題p→qの反例になりませんか? またx=2な... 続きを読む

EXαを定数とする。 実数xに関する2つの条件」を次のように定める。 p: -1≤x≤3 gx-a|>3 @25 条件, gの否定をそれぞれ, gで表す。 (1) 命題「カ⇒ g」 が真であるようなαの値の範囲はα< 命題「p= ⇒ g」 が真であるようなαの値の範囲は ≦a≦ <αである。 また、 である。 (2) a= =1のとき,x=は命題「 g」の反例である。 [センター試験] gについて x-a<-3, 3<x-a⇒x<-3+a, 3+a<x (1) 命題「p ⇒ q」 が真であるとき 右の図 [1] [2] の場合がある。 [1] のとき 3+α<-1 すなわち a <-4 [2] のとき 3<-3+α すなわち 6 <a よって、命題「 [1] -9- A c0 のとき |x|>cの解は x<-c, c<x -3+a 1-1 3 x ←3+α と 3+α の大 3+a 小関係は、αの値に関 わらず常に -9- [2] g」が真である ようなαの値の範囲は 3 3+a a<-4, 16<a -3+a -3+a<3+α 一線はxとだから! 48 数学Ⅰ また g:-3ta≦x≦3+α ゆえに、命題「♪ 」 が真である ようなαの値の範囲は -3ta≦-1 かつ 3≦3+α -3+a≦-1 から a≤2 33+α から Oma よって "0≤a≤2 (2) a=6 のとき g:x<3, 9<x -3+a -1 33+αx 反例「A=B」という 命題において 「Aは満たすがBは 満たさない (2)x=2などは,条件 pg をともに満たすた 命題 [pg」 の反例は, 条件を満たすが、 条件を満め、命題 [p→g」 たさないものであるから x=*3 の反例ではない。 -4はダメ? EX - 1744 じゃだめ?

回答募集中 回答数: 0
数学 高校生

奇跡の逆に を求める時に図を書いて条件を満たさないものが存在しないかどうか確認するのですが、 なかなか図を正確に書けません。どうしたらいいですか?

0基本 例題 98 曲線上の動点に連動する点の軌跡 161 ののののの 点Qが円x2+y2=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQを2:1 に内分する点Pの軌跡を求めよ。 を座 連動して動く点の軌跡 CHART & SOLUTION 101 p.158 基本事項 1 つなぎの文字を消去して, x, yだけの関係式を導く ・・・・・・! TRAND 動点Qの座標を(s,t),それにともなって動く点Pの座標を(x, y) とする。Qの条件をs, fを用いた式で表し,P,Qの関係から,s, tをそれぞれx,yで表す。これをQの条件式に 代入して, s, tを消去する。 3章 除く必 解答 Q(s, t), P(x, y) とする。 y Qは円 x2+y2=9 上の点であるから s2+2=9 ① Pは線分AQ を 2:1 に内分する点であるから (s, t) A 1.1+2s x= = 2+1 1+2s 3' y= 1.2+2t_ 2+2t 2+1 (1,2) = 3 -3 0 よって S= 3x-1 t=3y-2 2 2 ●これを①に代入すると (3x-1)+(3x^2)=9 (*)+(-)-9 ** 2 ゆえに 212 x =9 3 4 3 2 よって(x-1)+(-4② 2 2 =4 ..... 3 したがって、点Pは円 ②上にある。 逆に,円 ②上の任意の点は、条件を満たす。 以上から、求める軌跡は 中心 ( 1/3 2/23) 半径20円 (x- 13 1 軌跡と方程式 P(x,y) -3 つなぎの文字 s, tを消 去。 これにより, Pの条 件(x,yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y2=9上のどの位 置にあっても線分AQは 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない。 どうやって図をかくの?

未解決 回答数: 0
数学 高校生

数1の問題です。マーク箇所がどこからでてきたか、なぜそういう式なのか分かりません。 教えてください🙇‍♀️🙏

25 18 19 2次関数の最小値と相加・相乗平均 絶対暗記問題 18 難易度 大 CHECK 7 CHECK 2 CHECK | 2次関数y=f(x)=-ax2+bx+c (a≠0) は, 2点(1,-3), (513) 通る。 以下の問いに答えよ。 (1) b, c を a を用いて表せ。 (2) 2次関数y=f(x)の頂点の座標をαで表せ。 (3)αが正の値をとって変化するとき, 頂点のy座標の最小値を求めよ。 ヒント! y=f(x) が2点 (1,3), (5,13) を通るので,f(1)=-3, f (5) = 13 だね。(2)y=f(x) を標準形にする。 (3)相加・相乗平均の不等式を使う。 解答&解説 (1)y=f(x)=-ax2+bx+cは,2点(1,-3), (5,13) を通るので、 f(1) = - a+b+c = -3 ......① f(5) = -25a+5b+c = 13 ......2 ①-②より,24a-4b=-16,6a-b=-4 ∴b = 6a + 4 ... ③…(答 ③①に代入して,-a+6a+4+c = -3:c=-5a-7.・・④・・・(答) =-ax (2)(1) より,y=ax2+(6a+4)x-5a-7 -9/x²- - 6a+4 a 3a+2 x+ -5a-7 (3a+2)^ a a 「2で割って2乗 3a+2 4a²+5a+4 ax- + a a 9a²+12a+4 a y=f(x)の頂点の座標は 3a+2 a 4a²+5a+4 a 4a²+5a+4 3) 頂点のy座標を変形すると, a = 4√(a + 1) + 5 ここで,a>0のとき, 1>0よって,相加平均と相乗平均の不等式より、 4(a + 1 ) + 5 ≥ 4 · 2 √ d. 17 +5=13 等号成立条件 : a=1 a a = 1) よって、頂点のy座標の最小値は13である。 相加・相乗平均の不等式: p>0, g>0のとき,p+q≧2vpg (等号成立条件:p=q1

未解決 回答数: 0