学年

教科

質問の種類

数学 高校生

なぜ、(1)の図を用いて考えなければならないのか分かりません。。。教えて下さい🙏

に利用する。 分け。 分け。 1 2 O YA 2 12 解答 (2) f(f(x))= -10 12 2---- 1 10 -2 1 重要 例題 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると き,次の関数のグラフをかけ。 (1) y=f() BO (2) y=f()) D こき,nを実 xx<n+1** 号であり、 (1) グラフは図 (1) のようになるay 2f(x) 指針 定義域によって式が変わる関数では,変わる境目のx,yの値に着目。 (2) f(f(x)) f(x)のxにf(x) を代入した式で, 0≦f(x) <2のとき 2f(x), 2≦f(x) 4のとき 8-2f(x) (1) のグラフにおいて, f(x)<2となるxの範囲と, 2f(x) ≦4となるxの範囲 を見極めて場合分けをする。 よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき (0≤ f(x) <2) 8-2f(x) (2≤ f(x) ≤4) 2≦x≦3のとき 4 A=20 =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) =16-4x よって, グラフは図 (2) のようになる。 (2) ya YA I f(x)= f(f(x))=2f(x)=2.2x=4xしている 人の役割 f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) 0 1 2 3 4 x 2012 3 4 [参考] (2)のグラフは, 式の意味を考える方法でかくこともできる。 [1] f(x) が2未満なら2倍する。 [2] f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお, f(f(x)) f(x)とf(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学ⅢIで学ぶ)。 練習 関数f(x) ( 0≦x<1) を右のように定義するとき, ④ 71 次の関数のグラフをかけ。 (1) _y=f(x) (2) y=f(f(x)) (0≤x<2) 8-2x(2≦x≦4) x 2x 変域ごとにグラフをかく。 (1) のグラフから, f(x) の変域は 0≦x<1のとき -------- 0≤ f(x) <2 1≦x≦3のとき 2≤ f(x) ≤4 3<x≦4のとき 0≦f(x)<2 また, 1≦x≦3のとき, f(x) の式は 1≦x<2なら f(x)=2x 2≦x≦3なら f(x)=8-2x のように、 2を境にして 式が異なるため, (2) は左 の解答のような合計4通 りの場合分けが必要に なってくる。 f(x)={ YA 8から2倍を 引く M 2 4 x 2倍する 4 O 2x 2x-1 (0≦x</1/2) (1/2≦x<1) 3章 3 8 関数とグラフ

回答募集中 回答数: 0
数学 高校生

154. これらの問題3問は Oの位置についての記述がないですが、 Oはグラフを書いたとしたら原点に位置する場所のことを 示しているという前提の元で 写真のようにOPの大きさを求めていいのですか?

,b) 05-01 基本例題154 三角関数の合成 00000 | 次の式をrsin (0+α) の形に変形せよ。 ただし, r0 とする。 (1) √3 cos 0-sin si (2) sin 0-cos0 解答 (1) √√3 cos 0-sin0=-sin0+√√3 cos 0 P(-1, √3)とすると 指針> asin0+bcos A の変形の手順 (右の図を参照) ① 座標平面上に点P(a,b) をとる。 ② 長さ OP(=√²+62), なす角αを定める。 ③ 1つの式にまとめる。 asin0+bcos0=√a²+ b² sin(0+a) CHART asino+ b cos0の変形(合成) 点P(a,b) をとって考える よって OP=√(-1)2+(√3)=2 線分 OP がx軸の正の向きとなす角は √3 cose-sin0=-sin0+√3cos (2) P(1,-1) とすると って (3) P(2,3) とすると $154 OP=√12+(-1)2=√2 線分 OP がx軸の正の向きとなす角は =2sin(0+²) sin0-cos0=√2 sin 0- -√2 sin(0-7) 3 √13 OP=√22+32=√13 また,線分 OP がx軸の正の向きとなす角をαとすると 2 sina= √13 cos α = 2sin0+3cos0=√13sin(0+α) 3 √13 ただし, sinα= cos a= -π 2 √13 元 (3) 2 sin 0+3 cos 0 P(a, b) P √√31 p.242 基本事項 [1] -1 1 3 0 2 N √2 √3 √13 Aai 22 y4 次の式をrsin (0+α) の形に変形せよ。 ただし, r> 0, π<α とする。 (1) coso-√3sin O (3) 4sin0+7cos 0 (2) 1/12/0 1/12sinocost 0 AX x x a AR x αを具体的に表すことがで きない場合は,左のように 表す。 aar 243 4章 27 2 三角関数の合成

回答募集中 回答数: 0
数学 高校生

ガウス記号について理解が浅いのですが、写真の赤線の所はなぜマイナスがでてくるんですか?

500 第8章 整数の性質 *** 例題274 ガウス記号 (1)正の実数xを小数で表したとき,次の値をガウス記号を用いて表せ。 (ア) 小数点以下を切り上げた数(イ) 小数第1位を四捨五入した数 (2) [x+y]-[x] - [y] のとり得る値を求め 2つの実数x,yに対して, よ. 考え方 (1) (ア)は, たとえば, 小数点以下を切り上げると2になる数は, 1.1, 1.8, 2 などが当て はまり,1は当てはまらないことから、1<x≦2 を満たす x である. これを一般 の整数nについて考え,ガウス記号の定義を利用する。(イ)も同様。[] 解答(n-1<x≦n (nは整数)のとき,正の実数xの 小数部分を切り上げた数はnとなる. このとき, -n≦x<-n+1 [-x]=-n Focus (OFF(X)= よって, n=-[-x] より,求める数は, 601 -[-x] 830-1 1 (1) n-1/2/2x<n+1/12 (nは整数)のとき,正の実数 (イ) 71. -xの小数第1位を四捨五入した数はnとなる. このとき、n≦x+ +1/12/<n+1より、 =n よって求める数は1/2 Spot =(1-)!! (2) 0≦x<1,0≦β<1 とすると, x=[x]+α, y=[y]+β と表せるので __ x+y=[x]+[y]+a+ß (0≤a+B<2) (i) 0≦a+β<1のとき [x+y]=[x]+[y] (ii) 1≦a+β<2のとき -1 [x+y]=[x]+[y]+1 よって, (i), (i)より, $30 1- [x+y]-[x]-[y]=0, 1 -*=1 ガウス記号の定義を 利用できるように不 等式を整理する. caf10000 Ft ガウス記号については,まず具体的な数で実験する

回答募集中 回答数: 0
数学 高校生

144.1.2 記述はこれでも大丈夫ですか??

とも1つの円 に着目 +2a=0& すると 2=a(x-l 放物線 リニュ -2) の共有 ≦x≦1の 考えてもより を参照。 YA 重要例題144 三角方程式の解の個数 Capry aは定数とする。0に関する方程式 sin' 0-cos0+α=0 について,次の問いに答 えよ。ただし, 0≦02とする。 00 [[大 (1) この方程式が解をもつためのαの条件を求めよ。 (2) この方程式の解の個数をαの値の範囲によって調べよ。 指針 cos0=xとおいて, 方程式を整理すると 前ページと同じように考えてもよいが、処理が煩雑に感じられる。 そこで、 x2+x-1-a=0 (-1≦x≦1) ① 定数αの入った方程式f(x)=αの形に直してから処理に従い,定数aを右 大辺に移項したx2+x-1=αの形で扱うと、関数y=x2+x-1(-1≦x≦1) のグラフと直 線y=a の共有点の問題に帰着できる。 DET. www.e ] → 直線y=a を平行移動して, グラフとの共有点を調べる。 なお, (2) では 方程式は したがって 解答 cos0=xとおくと、0≦0<2πから (1-x2)-x+α=0 x2+x-1=a f(x)=x2+x-1 とすると f(x)=(x+ (1) 求める条件は、-1≦x≦1の範囲で、関数 y=f(x) の グラフと直線y=α が共有点をもつ条件と同じである。 5 よって、 右の図から ・≦a≦1 (2) 関数 y=f(x)のグラフと直線y=α の共有点を考えて、 求める解の個数は次のようになる。 [3] x=-1, 1であるxに対して0はそれぞれ1個, -1<x<1であるに対して0は2個あることに注意する。 5 [2] a=-- 5 4 5 4' — 練習 144 A [1] a<-- 1 <a のとき共有点はないから 0個 のとき, x=-- <a <1のとき -1exelt 2 2 から 2個 5 4 -1<x<--<x- れぞれ1個ずつあるから 4個 [4] α=-1のとき, x=-1, 0 から 3個 <x<0 の範囲に共有点はそ [6] [5] [4] この解法の特長は、放物線を 固定して, 考えることができ るところにある。 [3]→ 友量[2]- [6]→ [5]- [4]~ [2]+ [4]→ グラフをかくため基本形に。 y=f(x) 1 重要 143 XA iO |1 TIR» 1 2 YA 1 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから 2個 +35850 08 [6] α=1のとき, x=1から1個 2π 225 [3] 2001 0に関する方程式 2cos2Q-sin0-a-1=0の解の個数を,定数aの値の範囲に p.226 EX90,91 ただし。 0≦0<2πとする。 4章 23 三角関数の応用

回答募集中 回答数: 0
数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

どうして青丸の部分は×になるのですか?? 私は間違えて足してしまいました🫠

例題 200 加法 →例題199 1から9までの数字を書いた 9 枚の番号札がある。この中から同時に3枚の 札を取り出すとき, 数字の和が奇数になる確率を求めよ。 Action 何通りかある事象は、排反事象に分けて考えよ 解法の手順・ ・1 | 数字の和が奇数になる場合を考える。 2それぞれの場合の確率を求める。 3加法定理を利用して、 確率を求める。 ....... 解答 9枚の番号札から3枚を取り出す場合の数は Cg 通り 取り出した3枚の札の数字の和が奇数になるのは,次の2つ の場合がある。 (ア) 3枚とも奇数の場合 (イ) 1枚が奇数で2枚が偶数の場合 (ア),(イ) の事象をそれぞれ A, B とすると,確率を求める事象 は AUB である。 (ア)事象 A が起こるのは、5枚の奇数から3枚を取り出すと きであるから,その確率は 5 C3 5 9 C3 42 (イ) 事象 B が起こるのは, 5枚の奇数から1枚と,4枚の偶 数から2枚を取り出すときであるから, その確率は P(B) = 5C1 X C2 15 9 C3 42 A,Bは互いに排反であるから、求める確率は one of ................ P(AUB)=P(A)+P(B) = P(A) = 5 15 10 + 42 42 = 21さん 12 = 9.8.7 19C3 = 84 3・2・1 和が奇数になるのは,こ の2通りで,同時には起 こらない。 = 奇数は 1,3,5,7,9の 5枚 偶数は2, 4, 6,8の4枚 約分せずにP(A) の分母 裏参脚を転泡とそろえておく。 AとBが同時に起こ ることがない。

回答募集中 回答数: 0
数学 高校生

82. 記述に問題ないですよね??

130 0000 基本例題 82 共線条件,共点条件 (1)3点A(-2,3), B(1,2), C(3a+4, -2a+2) が一直線上にあるとき aの値を求めよ。 (2) 3直線4x+3y-24 = 0 ax+y+2=0 ...... ①, x-2y+5=0 ③が1点で交わるとき,定数aの値を求めよ。 基本 76 ...... 指針 (1) 異なる3点が一直線上にある (共線) .........! ⇔2点を通る直線上に第3の点がある 点Cが直線AB上にあると考える。よって,まず,直線 AB の方程式を求める。 (2) 異なる3直線が1点で交わる (共点) ⇔2直線の交点を第3の直線が通る ········· 7 _ 045. AD-80 DEA- 2直線①,②の交点の座標を求め,これを③に代入する。 解答 (1) 2点A,Bを通る直線の方程式は 2-3 y-3= 2-3 1-(-2) 1_(−2){x-(-2)} すなわち x+3y-7=0 直線AB上に点Cがあるための条件は 3a+4+3(-2a+2)-7=0 -3a+3=0 練習 Ⓡ82 止めよ。 ゆえに よって a=1 別解 -2=3a+4 すなわち α=-2のとき,直線AC の方程式 は,x=-2となる。 (1) 点Bは直線x=-2上にないから, αキー2である。 4'0 ▼ 「BC上にAがある」 また ための条件はのは 「AC上にBがある」 もよいが, 計算がらくにな る場合を選ぶ。 -2a+2-3 3a+4-(-2) 3a+6=3(2a+1) ゆえに よって a=1 (2) ①, ② を連立して解くと x=3, y=4 2直線 ① ② の交点の座標は (3, 4) 点 (3,4) が直線 ③ 上にあるための条件は a 3+4+2=0 よって E+ aキー2として, 3点A,B,Cが一直線上にあるとき,直線 AB の傾きと直線ACの傾きは等しいから すなわち B 直線AB上に C SAA 2, これはαキー2を満たす。 a=-2 中心 2a+1 3a+6 ○重要8 AB の傾き = AC の傾き を利用する解法。 ただし、 この考え方はx軸に垂直 な直線には通用しないから、 その吟味が必要。 なお、似た考え方をベクト ル (数学B)で学ぶ。 (1) 異なる3点 (1, 1), (3,4), (a, α²) が一直線上にあるとき,定数 (8 ■交点の座標を求める2直線 は,係数に文字を含まない ① ② を使用する。 え 重要 異な が1 指針 解答 2直線 点(3, また, 方程式 すなわ よって る。 別解 その 3直 の直 つま であ でゆら or of ゆえ

回答募集中 回答数: 0
数学 高校生

74.2 これでも大丈夫ですよね??

分する。 よ。 を する。 (X₂, 3) の座標は の平均 ばよい。 < 1 7 平行四辺形の頂点の座標 基本例題 74 (1) A(7, 3), B(-1, 5),C(5, 1), D を頂点とする平行四辺形ABCD の頂点D の座標を求めよ。 (2)3点A(1,2), B (5, 4), C (3, 6) を頂点とする平行四辺形の残りの頂点D の座標を求めよ。 指針 平行四辺形の対角線は、互いに他を2等分するから, 2本の対角線の中点が一致する。 このことを利用して,点Dの座標を求める。・・・・・・・・・・ (普通、平行四辺形ABCD というように,頂点の順序が与えられているときは,Dの位 置は1通りに決まる。 (2) (1)異なり、頂点の順序が示されていないから, 平行四辺形ABCD と決めつけては いけない。 ABCD, ABDC, ADBCの3つの場合を考える。 解答 頂点Dの座標を(x,y) とする。 (1) 対角線AC, BD の中点をそれぞれ M, N とすると M(715, 3+¹), N(−1+x 5+y) 2 点Mは点N と一致するから -1+x 4 12 2 22 5+y 2 よって x=13, y=-1 ゆえに D(13, -1) (2) 平行四辺形の頂点の順序は,次の3つの場合がある。 [1] ABCD [2] ABDC [3] ADBC [1] の場合,対角線は AC, BD であり,それぞれの中点を M, N とすると M(1+3, 2+6), N(5+x 4+v) 2 以上から、点Dの座標は 4 2 _5+x 2 8 4+y 2 2 M, Nの座標が一致するから これを解いて x=-1, y=4 [2] の場合,対角線は AD, BCであり,同様にして 1+x=22₁ ²2 8 2+y_10 2 よって x=7, y=8 [3] の場合,対角線は AB, CD であり,同様にして 6 3+x 6 6+y 2 22 2 よって x = 3, y=0 (-1, 4), (7, 8), (3, 0) B. p.113 基本事項 ④4 0 M(N) C C A AL DM B D x D' (検討) 上の図で, 線分 AD', BD, CD" の交点は △DD'D" の重 心であり, △ABC の重心で もある。 練習 3点A(3, 2), B(4, 1), C (1, 5) を頂点とする平行四辺形の残りの頂点Dの座 ② 74 標を求めよ。 119 3章 12 直線上の点 平面上の点

回答募集中 回答数: 0