数学
高校生

82.
記述に問題ないですよね??

130 0000 基本例題 82 共線条件,共点条件 (1)3点A(-2,3), B(1,2), C(3a+4, -2a+2) が一直線上にあるとき aの値を求めよ。 (2) 3直線4x+3y-24 = 0 ax+y+2=0 ...... ①, x-2y+5=0 ③が1点で交わるとき,定数aの値を求めよ。 基本 76 ...... 指針 (1) 異なる3点が一直線上にある (共線) .........! ⇔2点を通る直線上に第3の点がある 点Cが直線AB上にあると考える。よって,まず,直線 AB の方程式を求める。 (2) 異なる3直線が1点で交わる (共点) ⇔2直線の交点を第3の直線が通る ········· 7 _ 045. AD-80 DEA- 2直線①,②の交点の座標を求め,これを③に代入する。 解答 (1) 2点A,Bを通る直線の方程式は 2-3 y-3= 2-3 1-(-2) 1_(−2){x-(-2)} すなわち x+3y-7=0 直線AB上に点Cがあるための条件は 3a+4+3(-2a+2)-7=0 -3a+3=0 練習 Ⓡ82 止めよ。 ゆえに よって a=1 別解 -2=3a+4 すなわち α=-2のとき,直線AC の方程式 は,x=-2となる。 (1) 点Bは直線x=-2上にないから, αキー2である。 4'0 ▼ 「BC上にAがある」 また ための条件はのは 「AC上にBがある」 もよいが, 計算がらくにな る場合を選ぶ。 -2a+2-3 3a+4-(-2) 3a+6=3(2a+1) ゆえに よって a=1 (2) ①, ② を連立して解くと x=3, y=4 2直線 ① ② の交点の座標は (3, 4) 点 (3,4) が直線 ③ 上にあるための条件は a 3+4+2=0 よって E+ aキー2として, 3点A,B,Cが一直線上にあるとき,直線 AB の傾きと直線ACの傾きは等しいから すなわち B 直線AB上に C SAA 2, これはαキー2を満たす。 a=-2 中心 2a+1 3a+6 ○重要8 AB の傾き = AC の傾き を利用する解法。 ただし、 この考え方はx軸に垂直 な直線には通用しないから、 その吟味が必要。 なお、似た考え方をベクト ル (数学B)で学ぶ。 (1) 異なる3点 (1, 1), (3,4), (a, α²) が一直線上にあるとき,定数 (8 ■交点の座標を求める2直線 は,係数に文字を含まない ① ② を使用する。 え 重要 異な が1 指針 解答 2直線 点(3, また, 方程式 すなわ よって る。 別解 その 3直 の直 つま であ でゆら or of ゆえ
例題82 済 BE A, B, C T I F T Iz 3=2(x+²) 4-3- -2-| y=-+x+7 x+39-7:0 - (= √²²₁ ₂₂² E H x J s r Ca 3a + 4 + ³√ - 2α + 2 / ~ 7 = J, I 1 C - 3a + 5 = 0 a = /1 ②の交わる一点の座標は - Q x 4 sl x = 3₁9=4 これらを③に代入すると 3a + x + 2 = 0 a=2 サ 8x + 34 == -) 4x-84 y こ

回答

まだ回答がありません。

疑問は解決しましたか?