学年

教科

質問の種類

数学 高校生

解説お願いします

て 0 15 10 チャレンジ Challenge 例題 |視点 No. 例題 A,Bの2人が1個ずつさいころを投げ, 両方とも奇数ならばAの勝ち,そ れ以外のときはBの勝ちとなるゲームを行う。 このゲームを繰り返して,先 に3回勝った方が優勝とするとき, 次の確率を求めよ。 (1) 4ゲーム目でAの優勝が決まる。 (2) Aが優勝する。 (1) において, 3ゲーム目までに, Aの勝敗はどうなっているだろうか。 解 先に3回勝った方が優勝 各ゲームにおいて, Aが勝つ確率は 3 3 1 = × 6 4 1-1-3/ である。 4 (1) 3ゲーム目までにAが2勝1敗とな り 4ゲーム目にAが勝つときである " 1 *5 C₂ (4) ² (³) × ² = 256 から ² (2) Aが優勝するのは,次の3つの場合がある。 Bが勝つ確率は 1 2 3 4 ゲームゲーム ゲーム ゲーム Aが2勝1敗 ↑ Aが勝つ (i) 3ゲーム目に優勝が決まる場合 その確率は (-1)³ = 7 1 64 9 256 (ii) 4ゲーム目に優勝が決まる場合 その確率は (1) より () 5ゲーム目に優勝が決まる場合 4ゲーム目までにAが2勝2敗となり, 5 ゲーム目にAが勝つと きであるから,その確率は C2(41)(24)×1/1/1=25/72 4 (i),(ii),(Ⅲ) は互いに排反であるから, 求める確率は 1 9 27 53 + + 64 256 512 512 1章3節 いろいろな確率 問1 上の例題において、 先に4回勝った方が優勝とするとき, Aが優勝する確 率を求めよ。 65 4回勝つとき 12

解決済み 回答数: 1
数学 高校生

誰か教えてください!!!

5. 散布図ア, イ, ウについて、 次の問いに記号で答えなさい。【思・判・ 表 】 イ ウ B ア 0 (1) 相関係数が最も大きいのは、どの散布図か答えなさい。 (2) 相関係数が最も小さいのは、どの散布図か答えなさい。 y (3) 相関がないものは、どの散布図か答えなさい。 6. Aさんの英語と数学の10回分の小テストの結果を、箱ひげ図にまとめると、下の図のようになりました。 Bさんは最大値に注目して 「Aさんは、 英語が得意だね」 と言い、 Cさんは中央値に注目して 「Aさんは、 【主】 数学が得意だね」 と言いました。 BさんとCさんがなぜそう思ったのか理由を考えてみよう。 (P139 考えてみよう? の応用) 英語 数学 ア 8 9 10 2 (1) 「Aさんは、英語が得意だね」 と言った理由を、 空欄にあてはまる適当な語句を語群から選び答えなさい。 理由:「数学より (ア) が (イ) ので高い得点がとれると考えられるから」 語群 : 最大値 最小値 大きい 小さい イ (点) (2)「Aさんは、数学が得意だね」 と言った理由を、 空欄にあてはまる適当な語句を語群から選び答えなさい。 理由「数学は (ウ)が大きく範囲が (エ) のでテストの得点が (オ)と考えられるから」 語群 : 平均値 中央値 大きい 小さい 安定している, 不安定だ I オ

解決済み 回答数: 1
数学 高校生

数学Bの問題です。 至急です。明日の朝までにお願いしたいです。 フォローベストアンサーします。 よろしくお願いします。

2 <知・技≫ある工場では, お菓子1袋の重さが平均100g,標準偏差 6g の正規分布に従うように製造してい る。この工場で製造されたお菓子を25袋購入して調べたところ, 平均は103gだった。 この結果から 「お菓 子の重さの平均は100g でない」 と判断できるかを有意水準 5% で仮説検定したとき, 製造されるお菓子の 母平均をmとして、次の問に答えなさい。 (1) 次の空欄を埋めなさい。 帰無仮説は「m= ① 」, 対立仮説は 「m≠ ① 」 であり, 帰無仮説が正しいとすると, 標本平均 X の分布は正規分布 N (2) とみなせる。 (2) 標本平均が103 であるとき, (1) の X を標準化した確率変数Zの値の絶対値 | 2| を求めなさい。 ※小数で答えなさい。 (2)において,確率 P (|≧|z|) を求めなさい。 ※小数点以下の数の並びを5桁で答えなさい。 P(|≧||)=0. ア. 1~2000 イ. 2001~4000 ウ. 4001~6000 エ 6001~8000 オ.8001~10000 力. 10001~12000 キ, 12001~14000 (4) 仮説検定の結論について,空欄に入る語句を選び, 記号で答えなさい。 (3) の確率は,有意水準 5% よりも①ア.大きい, イ. 小さいから, 帰無仮説は棄却され ② ア.る。 イ.ない。 したがって, 「お菓子の重さの平均は100g でない」 と 3③ ア.いえる。 イ.いえない。 思・判・表〉 14000 人の生徒に対して, 数学と英語の試験を実施した。 数学の点数を X, 英語の点数をYと し、試験の点数は正規分布に従うと考え、 次の問に答えなさい。 (1) 数学の平均点が 66.2 点, 標準偏差が15.0点であった。 数学の点数が80点以上となる確率P(X≧80) を求めなさい 空欄に入る小数点以下の数の並びを5桁で答えなさい。 P(X≧80) = 0. (2) ① 数学の点数が80点であった生徒の順位はどの範囲にあるか, ② 数学の点数が59点であった生徒の順位はど の範囲にあるか、次の選択肢から1つずつ選び, 記号で答えなさい。 【選択肢】 (3) 英語の標準偏差は16.0 点であったが, 平均点が発表されなかったため、無作為に196人選び, 平均点m を推定し た。 196人の平均点が63.5点であったとき, 196人の点数を十分に大きな標本と考えてm に対する信頼度95% の信頼区間を求めなさい。 小数第二位を四捨五入して答えなさい。 信頼区間: ① ≦m≦ ②

回答募集中 回答数: 0