学年

教科

質問の種類

数学 高校生

数IIの問題です 棒線部分の一致するときを どうして考えないといけないのでしょうか 対象な点と問題にあるので、点PとQは一致する場合を考える必要はあるのでしょうか

例題 100 直線に関する対称移動 x+y=1 に関して点Qと対称な点をPとする。 点Qが直線 2y+80 上を動くとき、点Pは直線[ CHART & SOLUTION 対称 直線に関して PとQが対称 [[1] 直線 PQ がに垂直 [2] 線分 PQ の中点が上にある 上を動く。 000 基本 Qが直線x-2y+80 上を動くときの, 直線 l x+y=1 に関して点Qと対称な点 Pの軌跡、と考える。 つまり, Q(s, t) に連動する点P(x, y) の軌跡 ①s, tax,yで表す。 ②x,yだけの関係式を導く。 直線x-2y+8=0 ...... ① 上を動く点をQ(s, t) とし, 直線 x+y=1 2 に関して点Qと対称な点を P (x, y) とする。 4」 inf線対称な直線を求め ①るには、 EXERCISES Q(s,t) あるが、左の解答で用いた 軌跡の考え方は、直線以外 71 (p.137) のような方法も 1 の図形に対しても通用する [1] 点PとQが一致しない とき, 直線 PQ が直線 ② に垂直であるから -8 01 /P(x,y) t-y.(-1)=-1 垂直傾きの積が一 S-XC 線分 PQ の中点が直線②上にあるから x+y+t=1 2 2 ④ s-t=x-y ④から ③から s+t=2-(x+y) s, tについて解くと s=1-y, t=1-x また,点Qは直線 ①上の点であるから ⑤⑥に代入して すなわち s-2t+8=0 •••••• ⑥ (1-y)-2(1-x)+8= 0 2x-y+7=0・・・ ⑦ ] 点PとQが一致するとき, 点Pは直線 ①と②の交点 であるから x=-2,y=3 これは⑦を満たす。 なぜ一致するとき考える 上から, 求める直線の方程式は 2x-y+7=0 線分 PQ の中点の座標 (2/4) 上の2式の辺々を加え ると 2s=2-2y 辺々を引くと -21=2x-2 ← s, tを消去する 方程式①と②を させて解く。 BACTICE 100

解決済み 回答数: 1
数学 高校生

次の(2)の問題で青線から青線の移行がよくわからないのですがどなたか解説お願いします🙇‍♂️

例題 57 "" の値 ★★★ 1 1 (1)複素数zz+ √3 を満たすとき,290 + の値を求めよ。 Z 2.30 = 1 1 = {cos(±²² 7) + ¡sin(±²² 7)}”* + {cos(± 2/37) + isin (±²/7)}" 2n 2n 土 2n = cos( ± 21/17) + isin (± 2/2 7 ) + cos(+27) + isin (+237) (2) 複素数zz+ = 1 を満たすとき, w = z" + Z の値を求め z" = COS 2n 3 ±isin 2n 3 2n +cos π干isin 3 2n π 3 よ。 ただし, n は整数とする。 2n = 2 cos 思考プロセス (1)+(2+1) と考えるのは大変。 《ReAction 複素数の乗は、 極形式で表してド・モアブルの定理を用いよ 例題 55 具体的に考える 2+112=1/3より2-3z+1=0 ⇒ 極形式 2= 1 解 (1) z+ = √ √3より 2°-√3z+1=0 Z よって (複号同順) 3 (ア)n=3k(kは整数) のとき w=2cos (2kz)=2 (イ) n=3k+1 (kは整数) のとき w = 2cos(2kz+ 237) = 2 cos² = (ウ)n=3k+2 (kは整数) のとき w=2cos cos(2kz+ (ア)~(ウ)より, kを整数とすると 4 =-1 = 2 cos =-1 2 (n=3k のとき) √√(3) -4・1・1 2 = 3 土 2 2 1 i 2 = cos(土)+isin (+)(複号同順) このとき, ドモアブルの定理により 2 = {cos(+1) +isin(土)} 土 = cos(±5π) +isin (±5π) (複号同順) =-1 w= |-1 (n=3k+1,3k+2 のとき) 1 Point z+ 1 =kのときの " + の値 Z z" 1 複素数zが z+ = k ... ①(kは実数) を満たすとする。 2 ① より z-kz+1=0 この2解は互いに共役な複素数z, zであるから, 解と係数の関係 よって |z|2=1 すなわち |z|=1 ゆえに, z=cos+isind とおくと z"=cosn0+isinn0 したがって 1 1 ゆ = =-1 2.30 -1 2" + したがって 2.30 + 1 =-1-1=-2 (2)+1 =-1 より 2+z+1=0 2次方程式の解の公式を 用いてzの値を求める。 よって このことから,z+ はnの値に関わらず実数となることも分 2" =2"+(2")-1 = (cosnd+isinn)+(cosn0+isinn0)-1 = (cosnd+isinn)+(cosn0-isinn0) =2cosno 1 34 13 2 -1±√3i 2= 2 = + =cos (2) +isin (土) (複号同順) O このとき, ドモアブルの定理により 1 w = 2" + =z+zn 23 23 T x 1 練習 57 (1) 複素数zが z+ == 2 を満たすとき, 12 + 2 1 (2) 複素数zが z+- =√2 を満たすとき, w=z 2.

未解決 回答数: 1