学年

教科

質問の種類

数学 高校生

「n=k+1とおくと」という部分が分かりません‪💧‬

思考プロセス 例題 274 2つの 初項1, 公差2の等差数列{a} と初項 1, 公差3の等差数列{bn}がある。 (2) 数列{a} {bm}に共通して含まれる項を小さい方から順に並べてで (1) 数列{an}と{bm} の一般項をそれぞれ求めよ。 きる数列{cm} の一般項を求めよ。 (2) 未知のものを文字でおく da {a}の第1項と{bm} の第項が等しいとする。 ⇒21-1=3m-2 (l,mは自然数) 21-3m=1の自然数解 1次不定方程式 下 Action » 等差数列{an}, {bn} の共通項は,a=bmとして不定方程式を解け 解 (1) 数列{a} の一般項は an=1+(n-1)・2=2n-1 数列{6}の一般項は bn=1+(n-1)・3=3n-2 (2){a} の第1項と {bm} の第m項が等しいとすると,. a₁ = bm 21-1=3m-2より 2l-3m = -1 l=1,m=1はこれを満たすから 2(1-1)=3(m-1) ... ・① 21-3m=-1 2と3は互いに素であるから, l-1は3の倍数である。 2・13・11 よって, l-1 = 3k (kは整数) とおくと 2(1-1)-3(m-1)=0 l=3k+1 これを①に代入して整理すると m=2k+1 lmは自然数より k=0,1,2, ... nは自然数より, n=k+1 とおくと k=n-1- ゆえに,l=3n-2 (n=1,2,3, ...) であるから (別解 =2(3n-2)-1=6n-5 Cn=a3n-2 2つの等差数列の項を書き並べると {az}:1,3,5,7,9,11,13, {6}:1, 4, 7, 10, 13, 16, 19, よって、求める数列{cm} は, 初項1の等差数列となる。 公差は2つの数列の公差2,3の最小公倍数 6である から 19, 15, 17, 19, ... 3k+1≧1 より k≧0 12k+1≧1より 20 nとんの対応は,不定 方程式 ①を解くときに いた整数 1, m の組によっ て変わる。 具体的に考える {an}, {bn} を具体的に書 き出して, 規則性を見つ る。 ける。 {cm}:1, 7, 13, 19, … Cn=1+(n-1)・6=6n-5

未解決 回答数: 0
数学 高校生

黄チャートの数Iの例題45で、なんとなく意味は理解できた感じがするんですけど、同じことを自力で書こうとするには無理で、それってまだ自分が完璧には理解できていないとおもうので、背理法のコツとか、背理法をマスターする方法とか、この問題の解説的なものを教えて頂きたいです🙇‍♀️

基本 例題 45 √3 が無理数であることの証明 00000 命題 「n は整数とする。 n2 が3の倍数ならば, nは3の倍数である」 は真で ある。これを利用して、√3が無理数であることを証明せよ。 基本 44 CHART & SOLUTION 証明の問題 直接がだめなら間接で 背理法 √3 が無理数でない (有理数である) と仮定する。 このとき,√3=r(rは有理数)と仮 定して矛盾を導こうとすると,「√3=rの両辺を2乗して, 3=2」 となり,ここで先に進 めなくなってしまう。そこで,自然数 a, b を用いて√3 = (既約分数)と表されると仮 定して矛盾を導く。 解答 a √3 が無理数でないと仮定する。 このとき 3 はある有理数に等しいから, 1 以外に正の公約 数をもたない2つの自然数a, b を用いて、3= とされる。 ゆえに 両辺を2乗すると a=√36 a2=362 よって、2は3の倍数である。 050+ α2が3の倍数ならば, aも3の倍数であるから, kを自然数 として a=3k と表される。 これを①に代入すると 9k2=362 すなわち 62=3k2 よって、62は3の倍数であるから, 6も3の倍数である。 ゆえに αとは公約数3をもつ。 これはaとbが1以外に正の公約数をもたないことに矛盾す る。 ← 既約分数: できる限り 約分して, αともに1以 外の公約数がない分数。 inf. 2つの整数 α 6 の最 大公約数が1であるとき, αとは互いに素である という(数学A参照)。 ←下線部分の命題は問題 文で与えられた真の命 題である。 なお、下線部 分の命題が真であるこ との証明には対偶を利 使用する。 したがって√3 は無理数である。 INFORMATION ■に伝わります。 Eb.d 例題で真であるとした命題 「n2が3の倍数ならば, nは3の倍数である」 の逆も真で ある。 また, 命題 「n2 が偶数 奇数) ならば, nは偶数 (奇数) である」 および, この逆 も真である。 これらの命題が真であること, および逆も真であるという事実はよく使 われるので,覚えておこう。 PRACTICE 45Ⓡ 3 つまず 命題「n は整数とする。 n2 が7の倍数ならば, nは7の倍数である」 は真である。こ れを利用して√7 が無理数であることを証明せよ。 2 C 集

未解決 回答数: 0