学年

教科

質問の種類

数学 高校生

213. [3]でaは正の定数だから0<aであることは当然なのに 0<3a/4<1と書いているのは「すなわち」の後で aがどんな正の定数であっても[1],[2],[3]のいずれかに 属するためですか??

とにかく文 がらくになるよう とする。 平方の定理 数の変域を確認 ■柱の体積) 底面積)×(高さ) をVで表す。 0.は変域に含ま ないから、茨城の に対するVの値は 今後、本書の 2/ の方針で書く。 2x(a²- 基本例題213 係数に文字を含む3次関数の最大・最小 aを正の定数とする。3次関数f(x)=x-2ax+αx 0≦x≦1における最大 値M (α) を求めよ。 [類 立命館大] 基本 211 重要 214 指針 文字係数の関数の最大値であるが, p.329 の基本例題211 と同じ要領で, 極値と区間の端 での関数の値を比べて最大値を決定する。 (s) f(x)の値の変化を調べると, y=f(x) のグラフは右図のようにな る(原点を通る)。ここで, x=1/3以外にf(x)=f(1/3)を満たす (これをとする) があることに注意が必要。 よって、1/3 ( 1 <a) 区間 0≦x≦1に含まれるかどうかで場 a <α 3 合分けを行う。 解答 f'(x)=3x²-4ax+a² =(3x-a)(x-a) f'(x)=0 とすると x= a 3 ゆえに " ここで, x=1/3以外にf(x)= 4 a>0であるから, f(x) の増減表f(x) は右のようになる。 練習 1213 a x (*) 4 f'(x) + 3 1≦a≦3のとき 430 a |極大] 4 5a³ 27 を満たすxの値を求めると 4 f(x)=27a²³5x³-2ax² + a²x=27a²=0 αから a |=0 x=1/04 であるから (x - ²)²(x - 3/3-a)= したがって、f(x) の 0≦x≦1における最大値 M (α) は [1] 1</03 すなわちa>3のとき te 3 [2] 1/23 215/1/31 すなわち of sa≦3のとき [3] 0</1/23a <1 すなわち0<a<2のとき 以上から0<a<2,3<a のとき 1: aは正の定数とする。 関数f(x)=- ける最小値m(a) を求めよ。 a 0 極小 3 +: x=- x3 3 3 M(a)=f(1) M(a)=a²-2a+1 M(a)= 24/7a²³ phi M(a)=) M(a)=f(1) a 5+2ax²-2a²x f(x)=x(x2-2ax+α²) =x(x-a)^ から O (3)= (-3/a)² = 27ª² [1] YA [2] y Q3 O YA [3] y α3 -a²-2a+1 I -最大 II 1 a 3 3 a ax 1 a a²-2a+1 O a 3 注意 (*) 曲線 y=f(x)と直線y=27d" は、x=1/3の点において接するから、f(x)は (x-)- で割り切れる。このことを利用して因数分解している。 最大! a 4 a x ax²-2ax+αの区間 0≦x≦2にお p.344 EX 138 331 6章 3 最大値・最小値、方程式・不等式 37

回答募集中 回答数: 0
数学 高校生

183.1 10÷0.4771=20.95....となり、私は9を四捨五入して21.0...としたのですがこれでも大丈夫でしょうか??

286 SE 06 06 oras 0=8 基本例題183 常用対数と不等式180000 log103=0.4771 とする。 (1) 3" が 10桁の数となる最小の自然数nの値を求めよ。 00.0 orgol類 福岡エア 基本 18 (2) 3 進法で表すと100 桁の自然数Nを, 10進法で表すと何桁の数になるか、 指針 (1) まず, 3" が 10桁の数であるということを不等式で表す。 (2) (2) 進数Nの桁数の問題 不等式ん桁数-1≦N <h桁数の形に表す helbu ・・・・・・・・・改訂版チャート式基礎からの数学A 基本例題142 10年 3100-1≤N<3100 に従って、問題の条件を不等式で表すと 解答 (1) 3” が10桁の数であるとき 各辺の常用対数をとると ゆえに 10進法で表したときの桁数を求めるには, 不等式 ① から, 10″-1≦N <10" の形を たい。そこで,不等式 ① の各辺の常用対数をとる。 練習 183 9≦ 0.4771n<10 9 0.4771 10°≦3" < 1010 内 9≤n log103<10 よって ≤n<. したがって 18.8......<n<20.9...... この不等式を満たす最小の自然数nは n=19 Gorg (2) Nは3進法で表すと100桁の自然数であるか 3100-1N < 3100 すなわち 399 ≦N < 3100 各辺の常用対数をとると 1.005018 to 9910g 10 3 log10 N <10010g103 99×0.4771 ≦10g10N <100×0.4771 10 0.4771 ゆえに すなわち 47.2329 ≤log10 N<47.71mol)08 (8-8) 3 よって 1047.2329 ≦N < 1047.71 100.4771=3 ゆえに 1047 <N<1048 したがって,Nを10進法で表すと, 48 桁の数となる。 別解 10g103=0.4771 から ゆえに, 3% ≦N <3 100 から よって 1047.2329 ≦N < 1047.71 ゆえに (100.4771) 99 ≤N<(100.4771) 100 1047 <N < 1048 したがって, N を 10進法で表すと, 48 桁の数となる。 Nがn桁の整数 Saigof-Oこの不等式を満たす自 =(n=19, 20 であるが、 「最小の」という条件があ るので, n=19が解。 10'<10" LIO8OXE) gol (Ful 0108.0008 p=loga M⇒a=\l Dode= 10g102=0.3010, log103 = 0.4771 とする。 (1) 小数で表すとき, 小数第3位に初めて0でない数字が現れるように 自然数nは何個あるか。 (2) 10gs 2 の値を求めよ。 ただし, 小数第3位を四捨五入せよ。 また、この結果 利用して, 4'°を9進法で表すと何 基礎 AH 比べ 初め log 指針 Col 解 現在の とする 両辺の 40 ここて よって ゆえに したか 練習 ③ 184

回答募集中 回答数: 0
数学 高校生

175.2 訂正後の記述に問題はないですかね??

基本例題 175 対数の大小比較 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, log3561 (2) 2, log49, log25 指針 対数の大小比較では,次の対数関数の性質を利用する。 a>1のとき 0<p<g⇔logp<logag 対 大小一致 0<a<1のとき 0<p<glogp>log.g -- 解答 せ。説明 大小反対 (不等号の向きが変わる) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し、底を3とする対数で表す。 (2 を底を2とする対数で表す。 2と1049 (3) (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 件に関する箇所を比べてた。 HUTE 【CHART 対数の大小 底をそろえて 真数を比較 (3) 4数を正の数と負の数に分けてから比較する。 また, 10g2, 10gs2の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (2) 2210g2=10g222=10g24, 底2は1より大きく, 3 4 <5であるから (1) 1.5=2=log:3=log, 3} # (3³)²=3¹=27>5² また 底3は1より大きく35であるからな 10g33 >10g35) したがって 2 1.5 >log35 同値では10g23210g23 log4 9=- log22² ......... 1 logs2= log52= log23' 10g25 1 <3 < 5 であるから 0<log23 <log25 recept Soffol よって 0< すなわち したがって log25 log2 3 10gage 1 log.pt log23 <log24<log25 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1であるから logo.53<logo.52<0ft で,底2は1より大きく, 式しか定 次の各組の数の大小を不等号を用いて表せ。 (?) 19go.33,10go.35 YA a>1 0/p 00000 - ***** 0<log52<log32 logo.53 <logo.52<logs2<logs2で成り立つ log, y=logaxのグラフ gx y 0<a<1 log.p op. logag 1 g 底はそろえよ <A> 0, B>0ならば A>B⇒A¹>B² 底の変換公式。 a142ターのように アート 不等号の向きが変わる。 指針のy=10gaxのグラフ から, α>1のとき 0<x<1⇔10gax<0 x>1⇔10gax>0 Job 0 <a <1のとき 0<x<1⇔10gax > 0 x>1⇔10gax < 0 x Op.293 EX113 (3) logo.54, log24, log34 275 5章 31 対数関数

回答募集中 回答数: 0