学年

教科

質問の種類

数学 高校生

新高1の入学前課題です。 ⭕️がついている問題のうち、青い丸がついていない4問を解説していただきたいです。(解説がついていない問題集なため)そして、5番の7分の13〜〜とかの問題は素直に割りまくるしかないのでしょうか?

問題 第2節 実数 43 第1章 13 7 を小数で表したとき, 小数第50位の数字を求めよ。 he → p.29~31 数と式 6 αが次の値をとるとき,|-3|-|a+2の値を求めよ。 (1) a=0 p.34.35 2a=-3 2 170 4 4 3 a=√5 が次の値をとるとき,(x+1)" の値を求めよ。 x=3 Op.37 2 (2)x=-1 (3) x=-√√5 次の(1),(2)の式を計算せよ。また,(3)~(5)の式の分母を有理化せよ。 (1) 2√/27-3√12+√54 √3-1 √8 → p.38~40 (2)(√3+√6) 2√3+√2 3-√3 √3-√2 √√6 (1-√3) 9 √2 =1.4142 とするとき, 次の値を小数第4位まで求めよ。 ただし, 必要であれば小数第5位を四捨五入せよ。 → p.39, 40 √2 2 3(√2-1) √5-√3 √5+√3 10 x= y= √5+√3 √√57√√3 のとき,次の式の値を求めよ。 p.41 x2+y2 xy+xy3 ((3) x y y x 11 実数aに対し, n≦a を満たす最大の整数nをαの整数部分といい a-nをαの小数部分ということにする。 たとえば, 3.1の整数部分は 3であり,小数部分は 3.1-3=0.1 である。 このとき、次の実数の整数部分と小数部分を求めよ。 (1) 1.25 (2)√3 (3) -3.1 (4) /10-3

未解決 回答数: 1
数学 高校生

コイン投げの相対度数の求め方がわかりません💦 教えて下さると嬉しいです🙇🏻‍♀️՞

データの整理と分析 17 仮説検定 TAT データの整理と分析 問題 かせつけんてい レベル★★★ 食品AとBについて消費者の評価を調査しました。 無作 為に選んだ25人にどちらがおいしいかを回答してもらっ たところ, 18人がBと回答しました。 この回答のデータ からBの方がおいしいと評価されていると判断してもよ いか、仮説検定の考え方を用い, 基準となる確率を0.05 として考察しなさい。 ただし, 公正なコインを25回投げ て表の出た枚数を記録する実験を200セット行ったとこ 3、下のような表になりました。 この結果を用いなさい。 表の枚数 7 8 91011121314151617181920 計 度数 2 5 8 18 23 27323025157 43 1200 解くための材料 100 コインの表が18回以上出る相対度数と仮説検定の基準となる確率を比べる。 「解き方」 コイン投げの実験結果から, 25回投げて18回以上表が出る相対度数は, 4+3+1 200 8 200 -=0.04 これは基準となる確率 0.05 より小さいので, 25回投げて18回以上表が出るとい うことは、確率の小さいことが起こったことになります。 同様に、偶然に25人のうち18人がBと回答する確率も小さいと考えられるの で,A,Bのどちらの回答もまったくの偶然で起こるとは考えにくくなります。 よって、Bの方がおいしいと評価されていると判断してよさそうです。 ▼25人のうち16人がBと回答した場合は? 16回以上表が出る相対度数は, 15+7+4+3+1 200 30 -=0.15 200 これは基準となる確率 0.05 より大きいので,A,Bのどちらの回答もまったくの偶然で起こるであろう と考えることができます。 よって、Bの方がおいしいと評価されているとは判断できません。

未解決 回答数: 1
数学 高校生

数学 答えと違うやり方でやった(二枚目)のですが、良いのでしょうか?k=1のときを考えてないからダメだと思いますが。。

要 例題 43 虚数を係数とする 2次方程式 00000] xの方程式(1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように,実数k の値を定めよ。 また, その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 (x-6)=(+x)([+x) (£) ひとすると 基本 38 73 判別式は係数が実数のときに限る DOから求めようとするのは完全な誤り(下の INFORMATION 参照)。(ど)。 実数解をαとすると (1+i)μ2+(k+i)a+3+3ki=0 RBORONE ns-e+x(S-D) (1) 2章 6 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により (1) a=0, 6=0 α, kの連立方程式が得られる。 る。 .... 解答 NEDOZEURS-50-DE) to (S) 方程式の実数解をα とすると 整理して (1+i)a2+(k+i)a+3+3ki=0 (a2+ka+3)+(α2+α+3k)i=0 x=α を代入する。 a+bi=0 の形に整理。 α kは実数であるから, a2+ka+3, a2+α+3k も実数。この断り書きは重要。 よって ①② から ゆえに よって Q2+ka+3=0 _Q2+α+3k=0 ...... 2 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 複素数の相等。 ← α を消去。 infk を消去すると k=1 または α=30= (L-n) + α-22-9=0 が得られ, [1] k=1のとき ① ② はともに α2+α+3=0 となる。 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 これを満たす実数 αは存在しないから、不適 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 RS ←D=12-4・1・3=-11<0 ①:32+3k+3 = 0 ②:32+3+3k=0 [1] [2] から求めるkの値はk=-46 実数解は x=3 2次方程式の解と判別式 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a, b c が実数のときに限る。 例えば, α=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix'+x=0の解 はx=0, i であり、 異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 43° 0-6040-0 の方程式 (1+i)x²+(k-i)x-(k-1+2)=0 実数解をもつ #th to a litt

未解決 回答数: 0
数学 高校生

「」の部分がわかりません。どなたか教えてください!

000 求めよ。 重要70 重要 例題 102 連立不等式が整数解をもつ条件 xについての不等式 x 2-(a+1)x+a < 0,3x²+2x-1>0 を同時に満たす 整数xがちょうど3つ存在するような定数αの値の範囲を求めよ。 [摂南大 ] 00000 155 FE 基本 31.91 重要 100 CHART • SOLUTION 連立不等式 数直線を利用 不等式の左辺は,両者とも因数分解できる。 甲 分けて解を求める。 前者では文字αを係数に含むから,重要例題 100 と同様, αの値によって場合を F 解の共通範囲に含まれる整数値の考察には数直線の利用が有効である。・・・・ 解答 3章 一残る文字 る yの条件 x2-(a+1)x+a<0 から (x-a)(x-1)<0 <-1 -a→-a 11 よって 1 a -(a+1) a <1 のとき α <x<1 a=1のとき (x-1)2<0 から 解なし (x-1)2は常に 0 以上 Ex≦1)にお 2次不等式 1 <α のとき 1 <x<a 3x2+2x-1>0 から (x+1)(3x-1)>00 O よって x<-1, <a 1 <x 2 3 3 2 3-2 23 ① 1/1 <x<1には整数は含 3 まれない。 x 3 ①②を同時に満たす整数xがちょうど3つ存在するのは a <1 または α > 1 のときである。 [1] a <1 のとき 右の図から,a<x<-1 の範囲 の整数が-2-3, -4であれ ばよい。 -5≤a<-4 a -4-3-2-101 +5 ◆α=-5 のとき,① は -5<x<1 となり x=-5 が含まれず条件 を満たす。 α=-4 のとき, ① は -4<x<1 となり x=-4 が含まれず条件 を満たさない。 (p.55 ズーム UP 参照。) 16 よって [2] α>1のとき されてい よって ① 右の図から、1<x<αの範囲の 整数が 2 3 4 であればよい。 4<a≦5 -2- (1) ・最小値 以上から -5≦a<-44 <a≦5 -1 0 1 2 3 4 13 直は示し う。 PRACTICE・・・ 102 ④ (1)不等式 2x2-3x-5>0 を解け。 (2)(1)の不等式を満たし、同時に,不等式 x2+(a-3)x-2a+2<0 を満たすxの整 数値がただ1つであるように、定数αの条件を定めよ。 [[成城大]

未解決 回答数: 1
数学 高校生

数2 三角関数です。 (3)が何をやっているのか全くわかりません。 そもそもtanが傾きという事しか理解できていません。 丁寧に教えて下さると助かります。 よろしくお願いします。

SB< 2 のとき,次の不等式を満たす 0 の範囲を求めよ。 sine (2) 2cos+1 ≧ 0 (3) tan-1 Action sino, cos0 を含む不等式は、 単位円上の座標の大小で考えよ 例題133 Action tan を含む不等式は,直線x=1上の座標の大小を考えよ IA例題134 図で考える 端点が含まれるかどうかに注意する。 不等式 sin0 >k kl Dia (2)不等式 cosk y (3) 不等式 tan0≦k /1x Ok1x k Br O Da (1)02において, sind = π 3 を満たす 0 = ' 4 4 π √2 よって、不等式を満たす 0 の動径は 右の図の斜線部分にあるから P' 34_1 W2 P x y = sind のグラフが直線 y= √2 より上にある部 分を考えてもよい。 y y=sin0 π 1|21|2 145 (2) 2cos +120 cos 002πにおいて, cose 2 4 を満たす日は 0 = π, πT 3 3 例題 145 よって, 不等式を満たす 0 の動径は 右の図の斜線部分にあるから 2 4 0≤0≤ ≤0<2π (3)002において, tand= -1 3 7 を満たす 0 0 = 4π ・π、 ・π 4 よって, 不等式を満たす 0 の動径は 右の図の斜線部分にあるから π 3 3 7 <0≤ π、 0 π 2 4 P 34 P 0π 3 4 4" 3 3章 三角関数 y=cos とy=- =-1/2 のグラフで考えてもよい。 y y=cose 0 2π x y=- y = tan と y = -1 のグラフで考えてもよい。 y=tan0 VIZE 0 2π 2 3 T では定義され 2' 2 ないことに注意する。 1460≦2のとき、次の不等式を満たすの範囲を求めよ。 (1) sin≦ √3 (2)√√2 cos+1 < 0 (3) 2 /3tan0 + 1 0 p.271 問題146 267

未解決 回答数: 1