学年

教科

質問の種類

数学 高校生

数IIの微分の範囲です。 x=4/3aまでは分かるのですが、その後の[1][2][3]のところが全くわかりません。M(a)=f(1)とかの操作が何をしてるのかわかりません。 解説よろしくお願いします。

基本例題 213 係数に文字を含む 3次関数の最大・最小 ①①①①① aを正の定数とする。3次関数f(x)=x-2ax2+α'x の 0≦x≦1における最大 値M (α) を求めよ。 [類 立命館大 ] 基本 211 重要 214 指針文字係数の関数の最大値であるが,か.329 の基本例題211 と同じ要領で, 極値と区間の端 での関数の値を比べて 最大値を決定する。 f(x) の値の変化を調べると, y=f(x)のグラフは右図のようにな る(原点を通る)。ここで, x=1/3以外にf(x)=f( 3 (これをαとする) があることに注意が必要。 解答 a 3' 合分けを行う。 よって, f'(x)=3x²-4ax+a² =(3x-a)(x-a) f'(x)=0 とすると a α(// <a)が区間 0≦x≦1に含まれるかどうかで場 a>0 であるから, f(x) の増減表 は右のようになる。 x= ここで、x=1/3以外にf(x)=2 f(x)=1/27から ゆえに a 3' x- 3 1</o/ すなわちa>3のとき 3 112] 12/2016/01/314 すなわち2014/12 sisa a 4 2 1-20+ a² x a f'(x) + f(x) 2 x³-2ax² +a²x- 7 ≦a≦3のとき ... [0</1/24 <1 すなわち0<a<2のとき 30</a<1 以上から 4 27 a (x-10/31) 2(x-212/30)=0x401/3であるから したがって、f(x) の 0≦x≦1における最大値 M (a) は a 3 0 |極大 4 27 以外にf(x)=1を満たすxの値を求めると -a³=0 Sw I 注意(*) 曲線 y=f(x) と直線y=d' は, x=- a を満たす a 極小 0 0 0<a<2,3<a のとき M(a)=a²-2a+1 4 M(a) = 27 x= M(a)=f(1) ≦a≦3のとき M(a)=(1/3) M(a)=f(1) -a³ 2 + √( ²3² ) = ²3² (-²3 3 a) ² = 24/7 @² [1] 34 0 で割り切れる。このことを利用して因数分解している。 f(x)=x(x2-2ax+α²) =x(x-a)^ から [2]y 4 2703 YA [3] YA 4 27031 I -a²-2a+1 U 1 a 3 - 10/3 最大 a T T 1 0 I alm 3 1 最大 a 1 a a²2-2a+1 aax [最大] a 1 a 4 0 a 3 a x 4 4 a - 12/12 は、x=1/3の点において接するから、f(x) - 2270'は 27

回答募集中 回答数: 0
数学 高校生

29番の(1)で必要十分条件を求める問題で、どちらが必要条件でどちらが十分条件か分からなくなってしまいました。考え方を教えて頂きたいです。

28 よって ここで ゆえに −(n=k+1}{n+k+1)+(n−k)(n+k) n→∞0 =-2k²+(2n²+2n+1) f(n)=-4 f(x)=x(2k² +2n² +2n+1) k²=0+22k², 1=2n+1 TA³5 k=1 −42 k²+(2n²+2n+1) (2n+1) k=1 − n(n+1)(2n+1)+(2n²+2n+1)(2n+1) lim 72-00 n³ (2) f(n) -1/(1+1/2)(2+1/2)+(2+1/2)(2+1)} =--²--1-2+2-2= 8 3 3 別解n≦x≦k, k≦x≦n と k<x<kに分けて,直線 y軸に平行な直線につ x=i (-n≦i≦n) 上にある格子点の数を求める。 さて格子点を数える。 = -n≦i≦k のとき, 格子点の数は k=-n 1+3++{2(n−k+1)−1}=(n−k+1)² = (+_____________ k<i<kのとき, 直線 x = i の本数は ←-k+1≦isk-1 各直線上の格子点の数は よって k-1-(−k+1)+1=2k-1 = I=gb S=b 2(n-k+1)-1=2n-2k+1 Nk=2(n-k+1)+(2n-2k+1)(2k-1) =-2k²+(2n²+2n+1) 総合を複素数とする。 自然数nに対し、2” の実部と虚部をそれぞれxとyとして、2つの数列 29 {Xn},{yn}を考える。 つまり, z=xn+iy" (iは虚数単位) を満たしている。 (1) 複素数zが正の実数と実数0を用いて z=r (cos0+isine) の形で与えられたとき、 数列{x},{ym} がともに0に収束するための必要十分条件を求めよ。 1+√3 10 = n(n+1)(2n+1) のとき、無限級数Σx とΣy はともに収束し, それぞれの和は n=1 71=1 x=2y=イロである。 (1) z=r (cos0+isin0) [r>0] のとき HINT (1) x²+y² = (r")2 となることに注目し, まず必要条件を求める。 (2) z を等比数列の和の公式を利用した式で表してみる。 ORAN z"=r" (cosnotisinn()=r"cosn0 +ir” sinne Xn=r" cosnd, yn=r"sinno よって ゆえに x2+yn²=(r")' (cos2nd+sin'nb)=(x2)" limxn=limyn=0のとき lim(x²+ym²)=0 〔類 慶応大] 本冊 例題 13,102 ←ド・モアブルの定理。 ←=xn+iy 0sr²<1 よって に0<r<1のとき 1-400 0<r<1より, lim|rl"=0であるから ゆえに 0≦|x|=||"|cos nolsrp. よって 0≦ly|=|||sinner| また 以上から、求める必要十分条件は +③iのとき 10 lim|x|=lim|y|= 0 71-00 ゆえに 1110 Z ここで1-2 lim xnn-000 ZR= ここで k=1 z(1-2)= 1-² よって 1- 1+√3 i 10 1+√3 i 10 k=1 84 3+5√3 i 42 (1+√3i)(9+√3 i) (9-√3i)(9+√3 i) 6+10√3i_3+5√3i 2x= k=1 1-2 (1-(xn+iyn)) 1+√3 i 9-√3i 11-0 0721 0<r<1 n=1] -(1-Xn-iyn) 2R= = 1/2 (3(1-xn) +5√3 yn+(5√/3 (1–xn)—3yn}i) z*= (xn+iyn)= xx+iZyn k=1 3(1-x₂)+5√√3 yn 42 ΣXn² n=1 42 5√3 (1-xn)-3yn 42 0</1/3 <1であるから, (1) の結果より limxn=limyn = 0 „=lim 11-00 2 k=1 2 = = = = ( 1²/2 + √²³_i) = = = (cos / 1 + isin) Σyn=lim- 11-0 ←Sa<1のとき a²19 a=1のとき、 α>1のとき、18 42 ←xel Saxolxel から、 xel 0のとき 初項z. 公比zの等比 数列の初項から第 環 までの和 12-00 3 (1-x)+5√3ym_3_71 42 5√3 (1-xn)-3yn_15√/3 42 -419 ←分母の実数化。 42 14 ← 22 のもう1つの表現。 ←実部、虚部をそれぞれ 比較。 (12) 結果を利用 総合 N=1 £ =lim ży

回答募集中 回答数: 0
数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0