学年

教科

質問の種類

数学 高校生

(2)の答えがなぜ、sinA/2になるのか分かりません。 sinになるのは分かります。

基本例題 138 90° -0 の三角比 (1) 次の三角比を45° 以下の角の三角比で表せ。 (ア) sin 58° (イ) cos 56° EINS 目 (2) △ABCの3つの内角∠A, ∠B, ∠C の大きさを, それぞれ A, B, Cとす 709 が成り立つことを証明せよ。 解答 るとき,等式 in 指針 A =COS B+C 2 (1)(ア) 90°58°= 32°であるから 58°=90°-32° 2754 90° 0° 0 90°のとき の三角比 sin (90°-0)=cos 0, cos(90°-0)=sin 0, tan(90°- 0) = - 1 onde tan 0 ひが角( (1)(ア) in 58°=sin(90°-32°)=cos 32° (イ) cos 56°= cos(90°-34°)=sin 34° (ウ) tan 80°=tan(90°-10°)=- (2) A+B+C=180° であるから The 2000 B+C_180°A よって = 2 でか! COS ↑32° は 45°以下! よって sin58°=sin (90°-32° (イ) (ウ) も同じように考えるとよい。 (2)等式の証明は,一方の辺を変形して,他方の辺と一致することを示す。 A, B, Cは△ABCの3つの内角であるから A+B+C=180° よって, B+C=180° -Aであるから 2 サ 等式の証明の方法 (数学ⅡI)- = =90° ARM (ウ) tan 80° B+C_180°-A 2 08A 8A TUBOK 1 tan10° B+C=180°-A A 2 ゆえに B+C = cos(90°-4)=sin 20 COS したがって、 等式は成り立つ。 00000 A 2 2 /p.223 基本事項 ④ =90° A 2 2 sin (90°-8)=cos0 |cos(90°-0)=sin0 tan (90°-0)=- 等式の証明では, 右辺のうち、複雑 式を変形する。 等式P=Qが成り立つことを証明するには, 次のような方法がある。 [1] PかQ の一方を変形して,他方を導く。 1 tan cos(90°)=sic M

未解決 回答数: 0
数学 高校生

151. θはどこの角?と思ったのですがどこからこの場所(3.の解答の図の場所)であると分かるのですか?

236 43 030000 基本例題 151/3倍角の公式の利用 半径1の円に内接する正五角形 ABCDEの1辺の長さをαとし,0=2. 080057 (1) 等式 sin 30+ sin20 0 が成り立つことを証明せよ。 (2) cose の値を求めよ。 り (3) αの値を求めよ。 (4) 線分ACの長さを求めよ。 時間 最 p.233 基本事項 指針▷ (1) 30+20=2πであることに着目。なお, 0 を度数法で表すと 72°である。 (2) (1) の等式を2倍角・3倍角の公式を用いて変形すると (1) は (2) のヒント {0} COSOの2次方程式を導くことができる。 0<cos0 <1に注意して, その方程式を解く (3), (4) 余弦定理を利用する。 (4) では, (2) の方程式も利用するとよい。 解答 (1) 0から 50=2π このとき したがって (2) (1) の等式から sin 0 0 であるから, 両辺を sin0で割って 3-4sin20+2cos0= 0 3-4 (1-cos20) +2cos0=0 4cos20+2cos0-1=0 The ゆえに 整理して sin30=sin(2π-20)=-sin20 sin 30+sin 20=0 よって 3 sin 0-4 sin³ 0+2 sin 0 cos 0=0 0 <cos0 <1であるから (3) 円の中心を0とすると, △OAB において,余弦定理により AB²=OA²+OB²-20A OB cos 05(1-02005){( AC > 0 であるから AC= cos 0=1+√5 4 =12+12-2・1・1・ -1+√5-5-√5 4 a>0 であるから a=AB= (4) △OAC において, 余弦定理により AC2=OA2+OC2-20A・OC cos 20 30=2π-2050=30+20 5-√5 2 +2. −1+ 4 (*) =12+12-2・1・1・cos20=2-2(2cos20-1) =4-4cos20=4-(1-2cost)=3+2cos 2 -1+√5 (2) の(*)から。 5+√5 V 2 練習 11 ) 0=18° のとき, sin20 = cos30 が成り立つ 3倍角の公式 sin30=3sin0-4sin't 忘れたら, 30=28+0とし て, 加法定理と2倍角の 式から導く。 (3) BA (4) B C C 2751 a 1 1 0 D め ※加注 でに (1) 0=36°のとき, sin30= sin20 が成り立つことを示し, COS 36°の値を求め ある 次 sin co:

回答募集中 回答数: 0
数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

74.2 これでも大丈夫ですよね??

分する。 よ。 を する。 (X₂, 3) の座標は の平均 ばよい。 < 1 7 平行四辺形の頂点の座標 基本例題 74 (1) A(7, 3), B(-1, 5),C(5, 1), D を頂点とする平行四辺形ABCD の頂点D の座標を求めよ。 (2)3点A(1,2), B (5, 4), C (3, 6) を頂点とする平行四辺形の残りの頂点D の座標を求めよ。 指針 平行四辺形の対角線は、互いに他を2等分するから, 2本の対角線の中点が一致する。 このことを利用して,点Dの座標を求める。・・・・・・・・・・ (普通、平行四辺形ABCD というように,頂点の順序が与えられているときは,Dの位 置は1通りに決まる。 (2) (1)異なり、頂点の順序が示されていないから, 平行四辺形ABCD と決めつけては いけない。 ABCD, ABDC, ADBCの3つの場合を考える。 解答 頂点Dの座標を(x,y) とする。 (1) 対角線AC, BD の中点をそれぞれ M, N とすると M(715, 3+¹), N(−1+x 5+y) 2 点Mは点N と一致するから -1+x 4 12 2 22 5+y 2 よって x=13, y=-1 ゆえに D(13, -1) (2) 平行四辺形の頂点の順序は,次の3つの場合がある。 [1] ABCD [2] ABDC [3] ADBC [1] の場合,対角線は AC, BD であり,それぞれの中点を M, N とすると M(1+3, 2+6), N(5+x 4+v) 2 以上から、点Dの座標は 4 2 _5+x 2 8 4+y 2 2 M, Nの座標が一致するから これを解いて x=-1, y=4 [2] の場合,対角線は AD, BCであり,同様にして 1+x=22₁ ²2 8 2+y_10 2 よって x=7, y=8 [3] の場合,対角線は AB, CD であり,同様にして 6 3+x 6 6+y 2 22 2 よって x = 3, y=0 (-1, 4), (7, 8), (3, 0) B. p.113 基本事項 ④4 0 M(N) C C A AL DM B D x D' (検討) 上の図で, 線分 AD', BD, CD" の交点は △DD'D" の重 心であり, △ABC の重心で もある。 練習 3点A(3, 2), B(4, 1), C (1, 5) を頂点とする平行四辺形の残りの頂点Dの座 ② 74 標を求めよ。 119 3章 12 直線上の点 平面上の点

回答募集中 回答数: 0