学年

教科

質問の種類

数学 高校生

ここの単元での証明苦手なんですが、ポイントとかってありますか、??🙇‍♀️

AB=8,BC=6,CA=4である△ABCにおいて,∠Aの二等分線と辺 ーマ 38 角の二等分線と比(1) 標 準 する。 このとき, BD, BE の長さを求めよ。 BCとの交点をD, ∠Aの外角の二等分線と辺BCの延長との交点をEと え方 BD: DC=AB: AC, BE: EC=AB: AC となることを利用。 ADは∠Aの二等分線であるから BD: DC=AB: AC=8:4=2:1 2 2+1 -BC= -×6=4 答 よって BD= 3 AEは∠Aの外角の二等分線であるからB BE: EC=AB:AC=2:1 よって, BE: BC=2:1 となるから 12 三角形の辺の比 159 よって 8 6 D 分線と辺BCとの交点をD, ∠Aの外角の二等分線と辺BC の延長との交 練習 112 AB=6,BC=5, CA=4である△ABCにおいて,∠Aの二等 点をEとする。このとき, BD, BE の長さを求めよ。 ...... 4 BE=2BC=2×6=12 答 テーマ 39 角の二等分線と比(2) △ABCの辺BCの中点をMとし, ∠AMB と ∠AMCの二等分線が辺 応用 AB, AC と交わる点をそれぞれD, E とする。 このとき, DE // BCである ことを証明せよ。 考え方 DE // BC を証明するには, AD: DB=AE: EC を示せばよい。 解答 △AMB において, MD は∠AMB の二等分線で MA: MB=AD: DB あるから △AMCにおいて, ME は ∠AMCの二等分線で MA: MC=AE: EC あるから MBMC であるから、①,②より AD: DB=AE: EC DE // BC終 B M E 第2章 図形の性質 113 △ABC の ∠B, ∠Cの二等分線が辺AC, AB と交わる点をそ これぞれE, D とする。 DE // BC のとき, △ABCは二等辺三角形であるこ ETAA++ +

回答募集中 回答数: 0
数学 高校生

ベクトルに関する問題です。線が引いてあるところがなぜそうなるのかわからないです。

152 2つのベクトルに垂直な単位ベクトル 2つのベクトルa=(2,1,3)と=(1, -1, 0) の両方に垂直な単位ベクトルを 00000 求めよ。 基本例題 y, z) とすると ・求める単位ベクトルを= (x, [1] lel=1*5 let=1 [2] 前方から ae=0, be=0 これらから、x,y, 2の連立方程式が得られ,それを解く。 なお、この問題はp.404 基本例題13 を空間の場合に拡張したものである。 CHART なす角 垂直 内積を利用 求める単位ベクトルをe= (x, de le であるから よって 2x+y+3z=0 1, x-y=0 また、el=1であるから?x+y+z=1 ②から y=x 更に①から これらを③に代入して ゆえに 3x2=1 y, z) とする。 a⋅e=0, b·e=0 e=+ よって u |u| x=-x x2+x2+(-x)=1 1 x=± √√3 【検討 2つのベクトルに垂直なベクトル a=(a₁, az, az), b=(b₁,b₂, b3) KXFL u=azbs-asbz, asbi-abs, arbz-a2bi) はとの両方に垂直なベクトルになる。 各自, qu=0,u=0 となることを確かめてみよう。 また、こ p.489 参照。 このとき 1/11/1/13号同順) 2=F₁ √3 したがって, 求める単位ベクトルは =(//////)(/1/11/11/1) 上の例題では,u=(3,3,-3), lul=3√3から Laに垂直なベクトルの1つ 土 =(1,1,-1) (信州大) 詳しくは の外積という。 「は」として扱う 1.460 基本事項 基本 a₁ b₁ ◄el²=x² + y² +2² b 1 < = + ( + 7/3 + + 3 (3-7) でもよい。 の計算法 X> 463 /3 a3 XXX. ab2a2b1abs-asbababy (2成分) (成分) (y成分) 各成分は の横) (の横) ar 2章 8 空間ベクトルの内積 練習 4点A(4, 1,3), B(3, 0, 2), (-3, 0, 14), D (7, -5, 6) について, AB, 52 CD のいずれにも垂直な大きさのベクトルを求めよ。 [ 名古屋市大〕

回答募集中 回答数: 0
数学 高校生

赤丸のところが分かりません なんで場合の数と起こる確率をかけるんですか?

基本 例題 ボタンを1回押すと, 文字 X,Y,Zのうちいずれか1つがそれぞれ212 5'5'5 53 3つの事象に関する反復試行の確率 解答 |確率で表示される機械がある。ボタンを続けて5回押すとき,次の確率を求めよ。 バードの表示される回数が同じである確率 与えられた確率をすべて足すと1で, 3つの事象に関する反復試行の問題と考えられ 指針 る。 反復試行の確率では, 特定の事柄が何回起こるかということを押さえる。 (1)まず,Xが3回,Yが1回,Zが1回表示される場合が何通りあるか求める。 (2)表示される回数を求める必要がある。 X,Yが回(rは整数, 0≦x≦5) ずつ表 示されるとすると, Z は 5-2 回表示されることになる。 (1) ボタンを5回押したときに,Xが3回,Yが1回, 5! Zが1回表示される場合の数は =20 3N1! (号)()() < (²/²)*( ² ) ( ² ) ²20-2¹ 55 20 x 求める確率は (2) nは整数で, ボタンを5回押したときに, X, Y が回ずつ表示され るとすると, Z は 5-2r 回表示される。 0≦5-2r≦5 を満たす整数ヶは r=0, 1, 2 よって, X, Y の表示回数が同じになるには [1] X, Y が0回ずつ Zが5回表示される [2] X, Y が1回ずつ Zが3回表示される [3] X, Y が2回ずつ、Zが1回表示される 場合がある。 [1]~[3] の事象は互いに排反であるから, 求める確率は 5 5! 212\3 (3)*+- ²/1 · - -/- (-/-/ )*² + 1!1!3! 5 32 +320 +240 592 55 3125 64 625 5! 2 2!2!1!\5 (-/-)²(-/-)². 2/1/2 5 914) 5C3×2C×C でもよい。 場合の数 20 に, Xが3 回, Y が1回, Zが1回 起こる確率を掛ける。 不等式0≦5-2r≦5を 解くと 排反なら 確率を加える OFTEC 2章 2 ⑧ 独立な試行・反復試行の確率 ar=1) であり,この試

回答募集中 回答数: 0
数学 高校生

(2)についてなのですが、私の回答が間違いなのはなぜでしょうか?

No. Date (3) 56. 5m (1全体の数をxとする 6cm 5 H 6 r [n]]]] Date. 200 Aの個数は G.7x Aの不良品数は0.3.0.7x Bの個数は0.3x Bの不良品数は0.3x-0.05. よってP(E) (2) PE(A) = 0.03.0.7x+0.3x20.05 XCI =0.02x+ こ JJ = = XC₁ 0.036x÷x 36x 1000 250 9 250 WER 0.0.15x 21 x PE (A) = 0.021 x ²9 256 1000 PCEDA)なので、DF(A)=0.021x PETA) PE) 1,000 1 1 x P(A) O 1000 250 ス・x KRENAL PCEVA) 7x 12 (P(E) 56 原因の確率 基本例題 ある部品を製造する機械 A,Bがあり、不良品の発生する割合は,Aは3 58では5%であるという。 Aからの部品とBからの部品が7:3の割合 00000 ※大量に混ざっている中から1個を選び出すとき、それが不良品であるとい う事象をEとする。 (1) 確率P(E) を求めよ。 (2) 事象Eが起こった原因が,機械Aにある確率を求めよ。 OLUTION CHARTO 事象 E (結果) を条件とする事象A (原因) の起こる確率 P(ENA) P(E) Bの製品であるという事象をBとすると 3 10' 条件付き確率PE (A)= (1) 排反な事象に分解して求める。 (2)「不良品である」ということがわかっている条件のもとで、それが機械Aの製 品である確率(条件付き確率)を求める。 解答 選び出した1個が, 機械Aの製品であるという事象をA, 機械 inf. 次のように、具体的 3 100' 47,P(B)= PA(E)=- PB (E) = 10' 5 100 P(A)=- 不良品には,機械Aで製造された不良品と機械Bで製造さ れた不良品の2つの場合があり,これらは互いに排反である。 P(E)=P(A∩E)+P(B∩E) よって =P(A)PA (E)+P(B)PB (E)= (2) 求める確率は PE (A) であるから P(ENA) P(ANE) P(E) PE(A)= P(E) 7 3 3 100 10 × + 10 20956 × ÷ 7 12 9 21 250. 1000 9 5 100 250 <INFORMATION 原因の確率 上の例題 (2) は, 「不良品であった」という“結果”が条件と して与えられ、「それが機械Aのものかどうか」という“原 因” の確率を問題にしている。 この意味から (2) のような 確率を原因の確率ということがある。 基本53 な数を当てはめて考えると, 問題の意味がわかりやすい。 全部で1000個の製品を製 造したと仮定すると 機械 製造数 不良品 A 700 21 B 300 15 計 1000 36 (1) の確率は (2) の確率は E 21 E 317 1000 36 1000 241 250 A B ANE BOE 9 3 250 200 2章 9 250 21 7 36 12 6 条件付き確率 確率の乗法定理 PRACTICE・・・ 56 ③ ある集団は2つのグループA, B から成り, Aの占める割合は40 「生したときに, 選び出された1個がBのグループに属している確率を求めよ。 %である。 また, 事象Eが発生する割合がA では 1%, B では3%である。 この集 団から選び出した1個について, 事象Eが発生する確率を求めよ。 また、事象Eが発

回答募集中 回答数: 0