学年

教科

質問の種類

数学 高校生

次の226の問題の(3)の言いたいことは(2)で曲線との接線を求めていてその接線は二点で通るのでそのまま(2)の答えのxの係数を答えとしている感じなのでしょうか?どなたか解説お願いします🙇‍♂️

したがって, 求める接線の方程式は, ①に代入すると y = 0, y = 8x-12,y= 1 3 16 x- 9 32 とおくと 2 (3)ー= - ・・・ ②の実数解の個数は y=x-x.③の 2±√2 6 グラフと直線y=d(x-2)…・・ ④ の共有点の個数に一致する。 ④は点 点 (1/2, 0)を通り, 2-√2 6 グラフより ③と④が接するとき ③と④ 傾きの直線である。 は接点以外の共有点を1つもつから, 方程式 11/12 のとき,(1-3k) 最大値が であるから 2 Ok≦ k = 1± 1 4 1 (2)土 = 0<k≦ より k = 4 = <k<1 のとき, 4 1/12 とおくと 8k-1=0 (2k 1)(4k²+2k+1)=0 kは実数であるから k = 1 2 これは 1/24 <k<1を満たしている。 2-√2 1 したがって, 最大値が となるkの値は k= 2 6 2 ②は異なる2つの実数解をもつ。 したがって, 求めるαの値は a=0, 3 16' 8 227 3つの実数a, b, c (as b≦c) が a+b+c=-1, ab+be+ca=-5 を満たす。 次の値の とり得る範囲を求めよ。 226 (1) 関数 y=xxのグラフをかけ。 (2)曲線 y=xxの接線で,点 (12,0)を通るものをすべて求めよ。 (3)の3次方程式 ー=d(x-2) の異なる実数解の個数が2個であるような定数aの値 を求めよ。 (1) y'=3x²-2x=x(3x-2) abc を解とする3次方程式を作る。 (1) abc (2) a (1) abc = k とおくと, a, b, cは x+x2-5x-k=0 ... ① の3つの実数解である。 3次方程式 ax+bx+c=0 の3つの解をα By と すると 与えられた条件から、解と係数の関係を利用して、he を解とする3次方程式は -(a+b+c)+(ab-le-cola-ale-0 2 y=0 とおくと x=0, つまり、 と表せる。 beabo 3 ここでバーナー とおく。 よって, yの増減表は次のようになる。 2 x 0 3 0 [V + 0 - 0 + 4 y > 0 27 したがって, グラフは右の図。 (2) 接点をT(t, ピード) とおくと, Tにおける接線の方程式は y-(13-12) (312-21)(x-1) y=(31-21)x-21°+1 ... 1 これが点 (120) を通るから 1x = -1/2 のとき 方程式 ① は x3 + x2-5x=k f(x)=x+x5x とおくと, 方程式 ① の実数解の個数と曲線 y=f(x) と直線y=kの共有点の個数は一致する。 ここで f(x)=3x+2x-5 b a+β+r=- a C aβ+βr+ra= a =(x-1)(3x+5) 5 x 1 d f (x) = 0 とおくと 3 aβr= 5 f'(x)+ 0 0 + x=- 1 3' 175 f(x) > -3 よって, f(x) の増減表は右のよ うになる。 27 (ア) -3 <k< ー () () 175 27 175 のとき, 異なる3つの実数解をもつ。 8 4 4 27 27 9 27 (K) k=-3, それと異なる1つの実数解をもつ。 のとき、 実数の重解と YA y=f(x) J175 27 175 -3<k< のときは 27 3点で交わるから異なる 3つの実数解をもつ。 k=-3, 175 のときは 27 ty'=3x²-2x より 接線 の傾きは 32t (ウ) k-3, 175 27 y=k くんのとき、1つの実 1点で接して, 1点で交わ るから重解とそれと異な 3. 0 = (312-21)-213 +12 46-116°+6t=0 数解と2つの虚数解 (2つの互いに共役 な複素数解)をもつ。 0 1つの実数解をもつ。 y=k k<-3, (ア)~(ウ)より, abc がとり得る値の範囲は 175 -3 y=k 175 27 くんのとき t(t-2)(4t-3)=0 3 よって t = 0, 2, 4 t(4t2-11t+6)=0 t(t-2)(4t-3)=0 -3 abc ≤ 27 は1点で交わるから、 1つ の実数解と2つの虚数解 をもつ。

解決済み 回答数: 1
数学 高校生

赤で囲っている部分が何をしているか分からないです。 なぜ場合分けしているのか、(4,3)における接線を求めているのかを教えてください。

x+y2≤ 25 座標平面上に円 C: x2+y2 = 25 と直線l: x+2y=10 があり、連立不等式x+2y≦10 y20 (2) C上の任意の点をP(s,t)とおく。 の表す領域をDとする。 (1) 円Cと直線lの共有点の座標を求めよ。 また、 領域Dを図示せよ。 PにおけるCの接線の方程式はSou+ty=25③ ③は点(60)を通るため6S=25 すなわち S=… ④ また、PC上の点なのでS+t2=25...⑤ (2) 点 (6,0) を通る直線の中で 円Cと>0の範囲で接するような直線の方程式を求めよ。 (3) は 6sas10 を満たす実数とする。 点 (x, y) が領域D内を動くときの最小 値を とする。 αの値で場合分けをして, m をαを用いて表せ。 x-a (配点 40) ②) (1) C:x+y=25 … D, l x+2y=10 … © (x=10-2%… © ①.②より 4(5-+y=25 58-400+75=0 8-88+15-0 (y-3)(1-5)=0 y=3.5 · Crlの共有点は (4,3),(0.5)_ l より ピ=25-(2).25(g-25) 25x| = 36 t>0+) t=5√π ③より @dy 2x+5y = 25 Friths 5x+√lly = 30_ びわる5x+y=30 (3)a=kとおくとy=klx-a)…⑥ l ⑥は定点(a,O)を通る傾きkの直線。 -5 10 15 0 領域は斜線部分。 -5 ただし、境界線を含む。 kx-o-ak. 53 10 7x 456. "5+Jiy=30 点(4.3)におけるCの接線の方程式は4x+3=25 この接線の〆切は翠 (ア) 6≦a≦のとき、mは⑥とCが接するときのkの値。 -Ikx0-0-kal=5 すなわち ko より k=- JK+ト1円の中心から画付きでヘチョリ k=-55 √0-25 (イ) sas10のとき、mは⑥が点(4,3)を通るときのkの値。 (ア)(イ)より, m= 5 vasz (6xas) √03-25 3 ·4-a ( 2 ≤a≤10) "

解決済み 回答数: 1
数学 高校生

次の青線が計算しても求められないのですがどなたか解説お願いします🙇‍♂️

接線 ①が点 (0, 2) を通るから 2 = 6t° +7 +1 6t37t + 1 = 0 を解くと (t-1)(6t2-t- (t-1)(2t-1)(3t+1 0 1 よって 1 t=1, 2' 3 これを ①に代入すると y=-5x+2, y= 17 -x+2, y= 4 3x+2 すなわち y=(2t-5)x-t+1 ... ②② 接線 ①,②が一致することから f3s2-3=2t-5 ... ③ 組立除法を利用する。 [-2s3=-t+1 ... ④ +) 6-7 0 6-1-1 1 ③ ④より, tを消去して整理すると Sは実数より s2 (9s2-8s +12)=0 S = U 6 -1 -1 0 これより t=1 したがって, 求める共通接線の方程式は y=-3x 〔別解〕 (4行目まで同じ) ① と y=x-5x+1 を連立すると (3s2-3)x-2s' = x-5x+1 整理すると x²- (3s+2)x + 2s + 1 = 0 210 (1) αは実数とする。 2つの曲線 y=x+2ax²-3ax-4 と y=ax22a3aはある共 有点で両方の曲線に共通な接線をもつ。このとき,αの値を求めよ。 (2)2つの曲線 y=x-3x,y=x25x+1 の共通接線の方程式を求めよ。 (1) f(x) = x +2ax-3ax-4,g(x) = ax-2ax-34 とおくと (千葉大) 直線 ①と放物線y=x-5x+1 が接するから, ⑤の判別式をD とすると D=0 D = (3s' +2)-4(2s'+1)=s'(9s8s+12) s2 (9s2-8s+120 より s=0 f'(x) = 3x+4ax-34, g'(x) =2ax-24 したがって, 求める共通接線の方程式は y= -3x 共通接線をもつ共有点のx座標をおくと f(t) = g(t) より t3+2at2-3at-4-at2-2at-3a ・・・ ① f'(t) =g'(t) より 3t2+4at 3a² = 2at-2a² ・・・② ②より 3t+2at-d=0 共有点のy座標は等しい。 共有点における接線の傾 きは等しい。 211 次の関数のグラフをかけ。 (1) y=x-3x +2| (2) y = |x|(x²+x-1) (t+a) (3t-a)=0 a よって t = -a, 3 (1) f(x)=x3x²+2 とおくと f'(x) = 3x-6x=3x(x-2) (x) = 0 となるxは x=0,2 (ア) t = -a のとき ① より 4a3-4 3a3-3a a3+3a-4=0 (a-1) (a²+α+4) = 0 αは実数であるから a=1 a (イ) t= のとき + 組立除法を用いると 1 1 0 3 -4 11 4 114 0 a³ 2a3 a³ 2a3 α+α+ 4 = 0 は実数解 をもたない。 ①より + a3-4= -3a 27 9 9 3 a3+6a3-27a3-1083a3-18a3-81a 5a3-81a 108 = 0 (a-3)(5a²+15a-36) = 0 -15±3/105 よって a = 3, 10 (ア)(イ)より -15±3/105 a = 1, 3, 10 (2) 曲線 y=x-3x 上の接点をP(s, s-3s) とおくと, y'=3x²-3より, 点Pにおける接線の方程式は y- (sa-3s) = (3s2-3)(x-s) すなわち y=(3s2-3)x-2s3 ... ① 曲線 y=x^-5x+1 上の接点をQ(t, ピ-5t+1) とおくと, y'=2x-5 より, 点Qにおける接線の方程式は y-(t-5t+1)=(2t-5) (x-t x 0 ... 2 f'(x) + - 0 0 よってf(x)の増減表は右のよ うになる。 f(x) 2 ゆえに、関数(x)は x=0のと 極大値 2 x=2のとき 小値 2 また, f(x) =0 とおく (x-1)(x-2x-2)=0 よ x=1, x=1±√3 A 両辺に27を掛けて整理 する。 ●組立除法を用いると 1-√√3 3 5 0-81 108 +) 15 45-108 5 15-36 10 (1±√3,0 なり,y=f(のグラフは右の図。 y=f(x)のグラフは,y=f(x) の グラフ よって, y=f(x)のグラととの 共有点の座標は (1 y-f(s) = f'(s) (xls) を用いる。 x 軸より下方にある部分を 軸にして折り返したものであるから るグラフは右の図。 f(x)=|x|(x²+x-1) とおく。 (ア) x≧0 のとき f(x)=x(x²+x-1)=x+x-x より 1-30 f'(x) = 3x2+2x-1= (3x-1)(x+1) f (x) = 0 となるx は, x≧0 より x= 13 W 1 2 1+3

解決済み 回答数: 1