学年

教科

質問の種類

数学 高校生

cosθ-1=0になる理由がわかりません...

2 の値が におく。 する 。 あるか = √9 おく して 辺を 基本例題150 三角方程式・不等式の解法 (3) ・・・ 倍角の公式 0≦0<2πのとき、次の方程式,不等式を解け。 (1) sin26=cose 指針 解答 (1) 方程式から 2sinAcos0=cos0 ゆえに 2倍角の公式 sin20=2sinocoso, cos 20=1-2sin'0=2cos²0-1 を用いて, 関数の種類と角を0に統一する。 ② 因数分解して, (1) なら AB = 0, (2) なら AB ≧0の形に変形する。 ③ -1≦sin 0≦1,-1≦cos 0 ≦1に注意 して, 方程式・不等式を解く。 CHART 020が混在した式 倍角の公式で角を統一する cos (2sin0-1)=00 cos0=0, sin0= よって 0≦0 <2πであるから COS6=0 より sin0 == より 9 = 2/1/21* 以上から,解は 0= 0= 0= 兀 3 2' 2 5 6'6 π よって したがって,解は 0=0, 11 (2) 不等式から 整理すると ゆえに 0≦0<2πでは, cos 0-1≦0 であるから TC TC π 5 π, 6'2 6 2 2cos20-1-3cos0+2≧0 π π cos 0-1=0, 2 cos 0-1≤0 cos0=1,cos0≦ -≤0≤. 1 2cos20-3cos 0+1≧0 (cos 0-1)(2cos 0-1)≧0 5 3 (2) cos 20-3 cos0+2≧0 2 1 2 π π 2942 2 YA 1 0 -1 1 ON -1 6 voles 5 1 x 11 2 AND x 基本149 sin20=2sin Acos A 種類の統一はできないが, 積=0 の形になるので、解 決できる。 AB=0⇔ A = 0 またはB=0 sin0= -1/23の参考図。 cos 0 = 0 程度は図がなく しても導けるように。 cos 20=2cos20-1 235 cos 0-1=0 を忘れないよ うに注意。 今号の参 なお,図は cost≦ 考図。 4章 25 加法定理の応用

回答募集中 回答数: 0
数学 高校生

2枚目の問題は36(2)のように加法定理で解けないんですか?

00000 いただ 基本例題 36 確率の加法定理 (順列) p.284 基本事項| ~20本のくじの中に, 当たりくじが5本ある。 このくじをa, b2人がこの に1本ずつ1回だけ引くとき, a, b それぞれの当たる確率を求めよ。 し、引いたくじはもとに戻さないものとする。 順書きにしている=「P」を使う!! CHARTO SOLUTION 解答 確率 P(AUB) A,Bが排反ならP(A)+P(B)・・・・・・・ b が当たる場合は、次の2つの事象に分かれる。 U...... Baがはずれ,bは当たる A:aが当たり, bも当たる よって, 事象 A, B の関係 (A∩B=Ø かどうか) に注目する。 なお、確率の乗法定理 (p.310 参照) を利用してもよい。 5 1 20 4 a が当たる確率は 次に,a, b2人がこの順にくじを1本ずつ引くとき、起こりう るすべての場合の数は 20P2=380 (通り) このうち,bが当たる場合の数は A:aが当たり, bも当たる場合 5P2=20 (通り) B:aがはずれ, bが当たる場合 15×5=75 (通り) A,Bは互いに排反であるから、確率の加法定理により, bが当たる確率は P(AUB)=P(A)+P(B)= 20 75 95 + 380 380 380 = INFORMATION 当たりくじを引く確率は同じ 5P1 20P1 ◆2本のくじを取り出し a,bの前に並べる の数。 ◆事象 A, B は同時に こらない。 基本例題 袋の中に白 (1) 白玉が (2) 同じ色 CHART 上の例題において, 1本目が当たる確率と2本目が当たる確率はともにで等しい 一般に,当たりくじを引く確率は,引く順番に関係なく一定である。 また,引いたくじをもとに戻すものとすると, 1本目が当たる確率と2本目が当た 確率はともに 1/14 である。したがって 当たりくじを引く確率は, 引く順, もとに戻す, もとに戻さないに関係なく 確率 P (2) (1) れら 解答 9個の中から (1) 白玉2個 よって, 求 (2) 同じ色の A: B: の和事象で Aが起こる PRACTICE36② 20本のくじの中に当たりくじが4本ある。 このくじを a, b, c 3人がこの順に、 ずつ1回だけ引くとき, 次の確率を求めよ。 ただし引いたくじはもとに戻さない Bが起こる よって, Pe INFORM 上の例題で り出した王 (1 白玉が2個 したがって PRACTICE 1から9 この中か また、 9

回答募集中 回答数: 0