学年

教科

質問の種類

数学 高校生

例題でなぜ経由点が分かるのでしょうか?どこを経由点にしていいのか分かりません またDを経由するところとEを経由するところは、1つにまとめて8!/4!4!では、ないのでしょうか

【例題】 右図において, P地点からQ地点に至る最短経路の個数はい くつあるか。 P• Q 5 「重複組合せ 異なるn個のものの この場合は,n<r 列に対応させると, る。 【解答】矢印の順列に対応させて数える 求める最短経路を途中どこを経由するかで5通りに場合分けする。 (i) A を経由: P→A → Q 4! 4! -=16通り 3! 3! (ii) B を経由: P→B′ →B→B" → Q 3! 2! 3! ・1・1・9通り 31.-1.1.3-9 2! (Ⅲ) Cを経由:P→C→Q 4! 4! 3! 3! =16通り (iv) D を経由:P→D→Qは,1通り (v) E を経由:P→E→Qは,1通り ←PAは,→→→ ↑の順列, A→Qは, ↑↑↑→の順列に 対応する。 D Q C B B" B' A P E ↑ (i)~(v)の場合は同時には起こらないので, 16+9+ 16+1+1=43通り 途中, A, B, C,D,E のど こかを必ず経由し, A~E のうち重複して経由する経 路も存在しないので,この 場合分けにモレダブりは 無い。 a,b,cの3種類の 例えば, αを2個, b を求めるのに,次の た順列を考える。 aabbc は○○IC すると, abbbc は C bbbbc は 7個の場所から〇 したがって, C5 a, b, c,d,ea 同様に考えれば

解決済み 回答数: 1
数学 高校生

1番最後の[1][2]から、というところですが、 なぜ(-1)ⁿではなく(-1)ⁿ+¹なんですか💦

例題 28 重要 に分けて和を求める 00000 一般項がαn=(-1)"+1n2 で与えられる数列{an} に対して,Sn=ak とする。 (1) a2k-1+a2k (k=1, 2, 3, ......) を ん を用いて表せ。 (2) Sn= (n= 1, 2, 3, ......) と表される。 k=1 次のように頭を2つずつ区切ってみると Sn=(12-2)+(32-4)+(52-62)+...... =b₁ =b₂ 指針 (2) 数列{an}の各項は符号が交互に変わるから,和は簡単に求められない。」 =b3 ****** 上のように数列{6} を定めると, bk=a2k-1+αk (kは自然数) である。 よってm を自然数とすると [1] n が偶数, すなわち n=2mのときはS2m2=(-1)として求め られる。 k=1 k=1 1 [2]nが奇数、すなわちn=2m-1のときは,Sam = Sim-1+α2m より S2m12m-a2mであるから, [1] の結果を利用して Szm-1 が求められる。 このように, nが偶数の場合と奇数の場合に分けて和を求める。 (1) 2-1+a2x=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k [1]=2mmは自然数)のとき m m S2m=(a2k-1+a2k)=(1-4k) =m-4. m= =1であるから Sn -m(m+1)=-2m²-m =-2(2)-=-n(n+1) [2]=2-1(mは自然数) のとき 2m+1. azm=(-1)2 '(2m)'=-4m² であるから S2m-1=S2m-a2m=-2m²-m+4m²=2m²-m n+1 m=- であるから 2 S,=2(n+1)_n+1=1/2(n+1){(n+1)-1} = n(n+1) [1],[2] から Sn=(-1)+1 2 -n(n+1) (*) (-1) =1, (-1)=-1 ={(2k-1)+2k} ×{(2k-1)-2k} S2m= (a1+a2) +(as+αs) +...... +(a2m-1+a2m) Sm=-2m²-mに 2=1/27 を代入して,n m= の式に直す。 <S2m=S2m-1+a2m を利用する。 S2m-1=2m²-mをnの 式に直す。 451 (*) [1], [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。 一般項がαn=(-1)n(n+2) で与えられる数列{an} に対して, 初項から第n項ま での和 S を求めよ。 1 章 ③種々の数列

解決済み 回答数: 1