学年

教科

質問の種類

数学 高校生

1番です。記述に問題ないですかね?

128 基本例題 77 2次関数の最大・最小(2) 次の関数に最大値、最小値があれば,それを求めよ。 (1) y=2x²-8x+5 (0≦x≦3) (2)y=-x²-2x+2 (-3<x≦-2) p.126 基本事項 [②2] 重要 88, 演習 130, 指針 2次関数の最大・最小には, グラフの利用が有効。 特に、定義域に制限がついた場合は, グラフの頂点(軸)と定義域の端の値に注目する。 ① 基本形y=a(x-p' + q の形に変形する。 (1) (2) 2② 定義域の範囲でグラフをかく。 ③頂点(軸x=p) と定義域 (h≦x≦k など)の位 置関係を調べる。 4 頂点のy座標, 定義域の端でのyの値を比較 して, 最大値・最小値を求める。 CHART 2次関数の最大・最小頂点と端の値に注目 解答 (1) y=2x²-8x+5=2(x²-4x+22)-2・22+5 =2(x-2)^-3 また x=0のとき y=5, x=3のときy=-1 よって, 与えられた関数のグラフは右内で の図の実線部分である。が上に凸で ゆえに x=0で最大値 5, x=2で最小値-3 (2) y=-x2-2x+2 =-(x+2x+12 ) +1・12+2 =-(x+1)^+3 また x=3のとき y=-1, x=-2のときy=2 よって, 与えられた関数のグラフは右 の図の実線部分である。 ゆえに x=2で最大値 2,グラ 最小値はない。 5 最大 0 2 -1 -3 最大。 最小 -3 -2-1 NESTY'S ********. 最小 オ 00000 ⑩0x P k 最大 h k|p 軸x=2は,定義域 0≦x≦3の内部にある。 グラフをかくとき, 定義域 の内部にある部分は実線 , 外部にある部分は点線でか くとわかりやすい。 なお, (1), (2) のグラフの端点で, ●はその点を含み, 〇はそ この点を含まないことを意味 する。 <軸x=-1は, 定義域 -3<x≦-2の外部にあ <x=-3は定義域に含まれ ないから、 最小値はない。

未解決 回答数: 1
数学 高校生

例題47(2)の青い部分で何を言ってるのかよく分かりません。 青い部分以降もなぜそれをすれば答えが出るのかも教えて欲しいです。

2 第2章 高次方程式 Think x ²2 2次式の因数分解 (1) 複素数の範囲で考えて、次の式を因数分解せよ。依 ア 3xxのを求めよ。 例題 47 x-160 (2) xxy-6²-9x+ky+20 が1次式の積となるように熱の値 LONE を定めよ. |解答 考え方 (1) (与式)=0とおき、xの2次方程式を考えると,複素数の範囲で必ず解をもっ (2) まずxの2次式とみて因数分解し, これがx,yの1次式の積になると考える。 (1+AS)E 別解では, 「与えられた式が1次式の積で表される」 ⇒ (1) (ア) 31=0の解は, (2) SA )の形に因数分解できる」ことから( __(-1)±√(-1)-4・3・(-1)_1±√13 2.30 (沖縄)(増量)] x2+(y-9)x-6y2+ky+20=0 の判別式をDとすると,①の解は, x= 2 したがって, 与式は, x=- よって15 3x-x-1=3x-- (イ)x16=(x-4)(x+4)=(x-2)(x+2)(x+4人 3x²-x-1=0の2 x2+4=0の解は,x2=-4 より 解をα, βとすると、 したがって,x+4=(x-21)(x+2i) 左辺は よって, x-16=(x-2)(x+2)(x-2)(x+2i) の2次方程式 3x²-x-1 S __(y-9)±√D_9-y±√D と因数分解できる. 4 1+√13 6 √13)(x-1-√13) 6 (5)=(x-9-y+√D 2 3569 10 2 x=±2i x-9-y-√D (1) D=(y-9)²-4・1・(-6y2+ky+20 ) =y°-18y+81+24y²-4ky-80) == (S-88 =4(k+9k+14)=4(k+7)(k+2) したがって, 4(k+7)(k+2) = 0 よって, k=-7, -2 **** =25y^-2(9+2k)y+1=0 2(1)( したがって、与式がx,yの1次式の積になるのは, 根号の中のDがyの完全平方式であるときである. yについての2次方程式 25y²-2(9+2k)y+1=0 の 判別式をDとすると,D=0である. wimm D={(9+2k)}^-25・1=4k²+36k+56 )() の形で表す。 解の公式を用いる。 の係数3を忘れ ないこと ESTE =3(x-a)(x-β) と因数分解すること ができる. yの2次式 |完全平方式とは, ay-α)” の形のこと 完全平方式であるか ら、重解をもつ (判別式) = 0 100900-8+ x(+9)+* 注)Dがyについての2次式なので、Dをa(y-α)² と表すことができればDyの 1次式として表すことができるので、Dがyの完全平方 k-7 のとき D = ( 5y+1)^ k=2のとき D=(5y-1)²

回答募集中 回答数: 0