学年

教科

質問の種類

数学 高校生

(ア)の問題でなぜkとおけるのですか?

(1) AB=8, を AB, AC で表せ。 V (2) AOAB において, OA=d, OB=1とする。 (ア) ∠O を2等分するベクトルは, ることを示せ。 (+) (kは実数 と表され (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 線の交点をPとする。 このとき,OP を d, 方で表せ。 指針 (1) 三角形の内心は、3つの内角の二等分線の交点である。 次の「角の二等分線の定理」を利用し、 まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線 BI に注目。 B' 基本26 (2)Oの二等分線と辺 ABの交点をDとして,まずOD を a, b で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると, 点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し, 係数比較」の方針で。 → ACOA となる点Cをとり、(ア)の 点Pは∠Aの外角の二等分線上にある 結果を使うとAPはa, で表される。 OP = OA+APに注目。 AO (1)△ABCの∠Aの二等分線と辺BCの交点をDとすると Cの二等分線と辺 BD:DC=AB:AC=8:5 ABの交点をEとし 答 5AB + 8AC { AE: EB=5:7, よって AD= 13 8 56 また, BD=7• = であるから 13 13 56 AI: ID=BA:BD=8: =13:7 70-TO-HA 13 ゆえに 13 AI-202AD=122.5AB+8AC-1AB+/AC 13 20 20 13 4. (2)(ア∠Oの二等分線と辺 AB の交点をDとすると AD:DB=0A:OB=||:|| 3 =2:3 このことを利用して 角の二等分線の定理 を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 0=-8 15 EI: IC= : 5 10 B 7 D もよい。 ゆえにOD= |6|0A+|a|OB aba 方 = lal+161 + a+b a b 16 ab される。 求めるベクトルは,t を t≠0 である実数としてOD と表 t=kとおくと, 求めるベクトルは |a|+|6| + 6 (kは実数 k≠0) 161 A a a tOD= a+ba 0

未解決 回答数: 1
数学 高校生

次の(2)の問題で青線から青線の移行がよくわからないのですがどなたか解説お願いします🙇‍♂️

例題 57 "" の値 ★★★ 1 1 (1)複素数zz+ √3 を満たすとき,290 + の値を求めよ。 Z 2.30 = 1 1 = {cos(±²² 7) + ¡sin(±²² 7)}”* + {cos(± 2/37) + isin (±²/7)}" 2n 2n 土 2n = cos( ± 21/17) + isin (± 2/2 7 ) + cos(+27) + isin (+237) (2) 複素数zz+ = 1 を満たすとき, w = z" + Z の値を求め z" = COS 2n 3 ±isin 2n 3 2n +cos π干isin 3 2n π 3 よ。 ただし, n は整数とする。 2n = 2 cos 思考プロセス (1)+(2+1) と考えるのは大変。 《ReAction 複素数の乗は、 極形式で表してド・モアブルの定理を用いよ 例題 55 具体的に考える 2+112=1/3より2-3z+1=0 ⇒ 極形式 2= 1 解 (1) z+ = √ √3より 2°-√3z+1=0 Z よって (複号同順) 3 (ア)n=3k(kは整数) のとき w=2cos (2kz)=2 (イ) n=3k+1 (kは整数) のとき w = 2cos(2kz+ 237) = 2 cos² = (ウ)n=3k+2 (kは整数) のとき w=2cos cos(2kz+ (ア)~(ウ)より, kを整数とすると 4 =-1 = 2 cos =-1 2 (n=3k のとき) √√(3) -4・1・1 2 = 3 土 2 2 1 i 2 = cos(土)+isin (+)(複号同順) このとき, ドモアブルの定理により 2 = {cos(+1) +isin(土)} 土 = cos(±5π) +isin (±5π) (複号同順) =-1 w= |-1 (n=3k+1,3k+2 のとき) 1 Point z+ 1 =kのときの " + の値 Z z" 1 複素数zが z+ = k ... ①(kは実数) を満たすとする。 2 ① より z-kz+1=0 この2解は互いに共役な複素数z, zであるから, 解と係数の関係 よって |z|2=1 すなわち |z|=1 ゆえに, z=cos+isind とおくと z"=cosn0+isinn0 したがって 1 1 ゆ = =-1 2.30 -1 2" + したがって 2.30 + 1 =-1-1=-2 (2)+1 =-1 より 2+z+1=0 2次方程式の解の公式を 用いてzの値を求める。 よって このことから,z+ はnの値に関わらず実数となることも分 2" =2"+(2")-1 = (cosnd+isinn)+(cosn0+isinn0)-1 = (cosnd+isinn)+(cosn0-isinn0) =2cosno 1 34 13 2 -1±√3i 2= 2 = + =cos (2) +isin (土) (複号同順) O このとき, ドモアブルの定理により 1 w = 2" + =z+zn 23 23 T x 1 練習 57 (1) 複素数zが z+ == 2 を満たすとき, 12 + 2 1 (2) 複素数zが z+- =√2 を満たすとき, w=z 2.

未解決 回答数: 1
数学 高校生

数学Ⅱで質問です。 写真の問題の解答で、 [2]でm≠−1 をするのはどうしてか教えていただきたいです。お願いします。

26 第2章 複素数と方程式 CONNECT 5 方程式がただ1つの実数解をもつ条件 第 1 xの方程式 (m+1)x2+2(m-1)x+2m-5=0がただ1つの実数解をもつとき 定数の値を求めよ。 考え方 m+1=0 すなわち m =-1のとき, 与えられた方程式は1次方程式となり, だ1つの実数解をもつ。m=-1とmキー1で場合分けをする。 解答 (m+1)x2+2(m-1)x+2m-5=0 ...... ① とおく。 [1] m+1=0 すなわちm=1のとき 解と係数の関係 1 解と係数の関係 2次方程式 ax2+bx+c=0の2つの解をα,βと 2 2次式の因数分解 2次方程式 ax2+bx+c=0の2つの解をα,βと 3 2 数α,β解とする2次方程式 2数α, βを解とする2次方程式の1つは 方程式①は-4x-7=0となり, ただ1つの実数解 x=- -- 7 をもつ。 4 [2] m+1=0 すなわちmキー1のとき 方程式 ① は2次方程式となるから、①の判別式をDとすると D=(m-1)-(m+1)(2m-5)=-m²+m+6 =-(m+2)(m-3) ①がただ1つの実数解をもつのはD=0のときである。 -(m+2)(m-3)=0 よって これを解いて m=-2,3 これらはmキー1を満たす。 [1], [2] より, 求めるmの値は m=-2,-1,3 *04 の現 A 問 87 次の2次方程式について 2つの (1)x2+3x+2=0 *(3) 4x2+3x-9=0 *88 2次方程式 x²-2x+3=0の2 めよ。 (1)Q2+β2 (2) 303 (5)

未解決 回答数: 1