学年

教科

質問の種類

数学 高校生

この問題の解説の[1]で、f(0)>0となっています。 これが、f(0)≧0ではない理由を教えていただきたいです。なぜ、f(0)=0は入らないのでしょうか? 教えてください。よろしくお願いします。

展 106 放物線がx軸 放物線 y=x-8ax-8a+24 がx軸の正の部分と、異なる点で変わるように 定数αの値の範囲を定めよ。 CHART GUIDE | 放物線y=ax2+bx+c と x軸の共有点のx座標と定数んの大小に関する問 題では、グラフをかき [1] f(k) の符号 [2] D=62-4ac に注目する。 ただし, f(x) =ax2+bx+c である。 [3] 軸の位置 本間は,k=0 の場合(異なる2つの共有点のx座標がともにより大きい)で、 [1] f(0) > 0 [2] D > 0 [3] (軸の位置)>0 が条件。 解答 f(x)=x²-8ax-8a +24 とすると, 放物線 y=f(x)は下に凸で,軸は直線 x = 40 である。 方程式 f(x)=0 の判別式をDとすると, 放物線y=f(x)がx軸の正の部分と異な る2点で交わる条件は,次 [1] [2] [3] が同時に成り立つことである。 [1] f(0)>0 [2] D>0 [3] 軸が x>0 の範囲にある ■ [1] f(0)=-8a+24, f (0) > 0から8a+240 よってa<3 ...... ① (a-1)(2a+3)>0 3 a<-- 1<a [2] D=(-8a) 2-4.1.(-8a+24)=32(2a²+a-3) PIC =32(a-1)(2a+3) D> 0 から よって 2 ] [3] 4a>0 から a>0 ③ ] ① ② ③ の共通範囲を求めて 1<a<3 (ED) 3 0 1 2 注意 考え方の流れは下図の矢印のようになる。 YA [1] 軸| [3] 下に凸の放物線 y=f(x)がx軸の 正の部分と異な る2点で交わる グラフをかく 軸の 正の部 分で交 わる y軸より 右側に ある 条件を 読みとる [1] f(0) > 0 文章で表現 0 [2] D > 0 [2] 軸と x [[1] ~ [3] の [3] 軸 > 0 2点で 件から、グラ 交わるフがかける TRAINING 106 ④★ 定めよ。 201 DANA 2次方程式 x2(a-4)x+a-1=0 が次の条件を満たすように、 定数αの値の範囲を (1)異なる2つの負の解をもつ。

未解決 回答数: 1
数学 高校生

囲ってある部分についてです。 なぜ(−1)n乗じゃないんですか?n−1乗になる理由を教えてください!

742/21☆ 基本 例題 42 2つの無限等比級数の和 (2-2)+(+2)+(3-2)+ 21/20よ 次の無限級数の収束, 発散を調べ, 収束すればその和を求めよ。出会 00000 +......+ ++(2)+ ...... P.64 基本事項目,基本 |指針 無限級数 まず部分和 ( )内を1つの項として, 部分和 S を求める IN ROO ぞれ求めよ。 (複数 D 43 ここで,部分和 S, は 有限であるから,項の順序を変えて和を求めてよい。 注意 無限の場合は、無条件で項の順序を変えてはいけない(次ページ参照)。 別解 無限級数 ∑an, Σbn がともに収束するとき, k, lを定数として 00 n=1 n=1 n=1 00 00 (kan+1b.)=kan+12bm が成り立つことを利用(p.64 基本事項)。 n=1 n=1 3人が1枚目、2枚 初項から第n項までの部分和を Sn とすると Sn=12+ 解答 S,= (2+//+//+..+)-1/2-12/3+/2/2 +・・・+ (-1)n-1 2n LIDE 1- 3 1-(-1/2) =3 の一部の金額を金者の よって |= lim Sn = 3.1-1.1=3 8 企業の貸し出しに 金を 3払いに当て、拡 ゆえに、この無限級数は収束して、その和は 8 別解(与式)=2371+ n=13" n-1 83 (-1)=1/2(1/2)^2+(-1/2)"} 22 ( 13 ) は初項 2.公比 1/3 の無限等比級数ne て 2(-1/2)は初項 - 121,公比-12 の無限等比級数 a Sは有限個の項の和な ので,左のように順序を 変えて計算してよい 。 初項α,公比rの等比数 列の初項から第n項ま での和は,r=1のとき a(1-r") 1-r で,公比の絶対値が1より小さいからこの無限等比級 無限等比級数 Mar 数はともに収束する。 ゆえに、与えられた無限級数は収束して, その和は その和は \n-1 1000 00-900 (7=1 2 === + は、 1- 3 として新たにお金を n n=1 の収束条件は a=0または|r|<1 ◆収束を確認してから 8 を分ける。 3 無限級数の収束, 発散を調べ, 収束すればその和を求めよ。 p.81 EX

解決済み 回答数: 1
1/58