学年

教科

質問の種類

数学 高校生

高校数学です。解答の波線部分がどうしてそうなるか分かりません。解説お願いします。

cha DSC 実戦問題 21 正四面体の体積 一辺の長さが6である正四面体 OABCにおいて,辺 OA を 1:2に内分する点を P とする。 (1) ∠BPC= 0 とおく。 P PB=PC = [ア cost= イであるから, V' = セ 「エオ よって、 △PBCの面積SはS カキクである。 (2)頂点から底面 ABCに下ろした垂線を OG とすると,OG 正四面体 OABCの体積Vは V サシスとなる。 よって、 四面体 OPBCの体積V' は であるから,頂点 0 から平面 PBCに下ろした垂線を OH とすると, ウ である。人類の ケコであるから B タ OH = テト である。 [チツ] 定により 解答 8-3-4-es ATC-11-20S- K1 (1) OP=2より,OPにおいて、余弦定理により三角形を取り出して考える。 P = OB'+OP2-2・OBOP cos60° HA01日発行) =62+22-2・6・2・1=28 2 AB (1) C (2) DESTIN PB > 0 より PB=2√7 よって PB=PC=2√/7 Wons ABC (1-1 E DA E ABC [Key1 したがって, △PBCにおいて, 余弦定理により (2√7)+(2√7)2-62 cost= 2-2/7.2/7 5 14 E 416/3 8A (2) 5 3/19 A 次に, 0°<0<180° より ゆえに, PBC の面積 S は sin0 = √1-cos20= 14 とす TA 0°<0 <180° より sin0 > 0 1 2 1/12 (27) ・PB・PC・sin0 = S= 3√/19 =3/19 DATA & D 14 (2) OA=OBOC より, G は △ABCの外接円の中心であり, AGは OA=OB, Key 外接円の半径であるから, 正弦定理により 0 (+α)(8-x) て ∠OGA = ∠OGB = 90° 6 8 OG は共通であるから 2AG = よって AG =2√3 sin 60° [Key 1 ゆえに、 直角三角形OGA において したがって, 正四面体 OABCの体積Vは OG = √OA-AG" = 2/6 1 V= ・ △ABC OG 1033 AOGA = AOGB よってAG= BG 同様にして AG = BG = CG であるから,点 G は △ABC の外接円の中心である。 3 f = 90 =/1/1/1/ ・6・6・sin60°・2√6 = 18√2 (四面体の体積) さらに,PはOA を 1:2に内分する点であるから, 四面体 OPBCの体 1 = ×(底面積)×(高さ) 3 積 V₁ = V = 6√2 Key 2 1 また,V' = APBC・OH が成り立つことから 1 6√2 3 ・3/19 OH より OH = 6 √√38 19 JA+E OBCを底面と考えると、四 面体 OPBCの高さは、正四面体 OABCの高さの1/100倍である。 DA △PBC を底面と考えると, OH が高さとなる。 攻略のカギ! Key 1 空間図形は,平面で切り取って三角形に注目せよ 空間図形における辺の長さや角の大きさは, 空間図形から適当な三角形を取り出し、正弦定理や余弦 理を利用して求める。 Key 2 四面体の高さは、体積と底面積から求めよ 立食 内

解決済み 回答数: 1
数学 高校生

数Aの問題です! (2)でなぜDは内分するのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

直線 BC と交わる点をDとする。 線分 BD の長さを求めよ。 の二等分 (2)AB=4,BC=3,CA=2である△ABCにおいて、〈およびその外 の二等分線が直線BC と交わる点を, それぞれD, E とする。 線分DEの 長さを求めよ。 Op.361 基本事項 21 CHARY & SOLUTION 三角形の角の二等分線によってできる線分比 線分)=(三角形の2辺の比) B 内角の二等分線による線分比 外角の二等分線による線分比 → 内分 右の図で、いずれもBP:PC=AB: AC 各辺の大小関係をできるだけ正確に図にかいて考える。 解答 B A C (H+HA) (1) 点Dは辺BC を AB AC に外分するから BD: DC=AB: AC A-DATA *AB: AC=1:2 であるから BD:DC=1:2 ← AB: AC=3:6 610 HAEOL よって BD=BC=4 ←BD:DC=1:2 から →C D B BD:BC=1:1 (2)点Dは辺BC を AB: ACに内分するから CHECK ← AB: AC=4:2 BD: DC=AB: AC=2:1 または、その ゆえに DC= 1 2+1 xBC=1 この点をHとするとを また,点Eは辺BC を AB AC に外分するから BE: EC=AB: AC =2:1 ゆえに よって CE=BC=3 DE=DC+CE B DC E =1+3=4 1辺と他の 北の PRACTICE 64 (1) AB=8,BC=3,CA=6 である△ABCにおいて, ∠Aの外角の二等分線か BC と交わる点をDとする。 線分CDの長さを求めよ。 (2)△ABCにおいて, BC=5, CA=3, AB=7 とする。∠Aおよびその外角の 分線が直線 BC と交わる点をそれぞれD, E とするとき 線分 DE の長さを [(水) 椅]

解決済み 回答数: 1
数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0
1/6