学年

教科

質問の種類

数学 高校生

解法は大体あっていたのですが、回答5〜7行目においてxの範囲を出す理由がわかりません。回答よろしくお願いします。

基本 例題 118 2次不等式と文章題 0000 立方体Aがある。 A を縦に1cm縮め, 横に2cm縮め,高さを4cm伸ばし直 方体Bを作る。 また, A を縦に1cm伸ばし, 横に2cm 伸ばし, 高さを2cm 縮 めた直方体を作る。 Aの体積が,Bの体積より大きいがCの体積よりは大き くならないとき,Aの1辺の長さの範囲を求めよ。 指針 ①大小関係を見つけて不等式で表す 不等式の文章題では,特に,次のことがポイントになる。 ②解の検討 基本117 まず、立方体Aの1辺の長さをxcmとして(変数の選定),直方体B,Cの辺の長さ それぞれxで表す。そして、体積に関する条件から不等式を作る。 199 なお、xの変域に注意。 CHART 文章題題意を式に表す 表しやすいように変数を選ぶ 変域に注意 3 3章 立方体Aの1辺の長さをxcmとする。 2 解答 直方体B, 直方体Cの縦, 横, 高さはそれぞれ 直方体B: (x-1)cm, 不 (x-2)cm, (x+4)cm 直方体C: (x+1)cm, (x+2)cm, (x-2) cm 各立体の辺の長さは正で,各辺の中で最も短いものは 02 (8-5)( (x-2)cm であるから x-2>0 すなわち x 2. ① ...... (Bの体積) < (Aの体積) ≧ (Cの体積)の条件から (x-1)(x-2)(x+4)<x≦(x+1)(x+2)(x-2) x3+x2-10x+8<x≦x'+x-4-4... (*) ゆえに よって x²-10x+8<0. ... ****** xの変域を調べる。 2005,0 Jeb PはQより大きくない を不等式で表すと P≦Q 等号がつくことに注意。 ②かつx-4x-4≧0 ③ (*)はどの項が消えて x²-10x+8=0 の解は x=5±√17 ゆえに、②の解は 5-√17 <x<5+ √17 x2-4x4=0の解は よって、③の解は ④ x=2±2√2 x²-10x+8<0≦x2-4x-4 と同じ。 また, P<Q P<Q≦R⇔ Q≤R x≦2-2√22+2√2≦x ①, ④ ⑤の共通範囲は 2+2√2≦x<5 + √17 以上から、立方体Aの1辺の長さは ...... ⑤ 2-2√2 2 2+2√2 5+√17 x 2+2√2cm以上5+√17cm 未満 5-√17

未解決 回答数: 1
数学 高校生

この問題で、どうしてk=2、a=2と出たのに実数解を持たないことがあるのですか? 注意を読んでもよくわからないので教えてください! それと、[2]で、k=-6と出たのに、kを代入して確かめるのですか? a=2になったのだからx=2が確定したわけではないのですか?

重要 例 102 2次方程式の共通解 171 ①のののの 2つの2次方程式 2x2+kx+4=0, x+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め、その共通解を求めよ。 指針 基本97 2つの方程式に 共通な解の問題であるから,一方の方程式の解を求めることができ たら、その解を他方に代入することによって、定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では、次の解法 が一般的である。 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a+ko+4=0 ①, a²+a+k=0 これをα, hについての連立方程式とみて解く。 ② ② から導かれる k=-α-a を ①に代入 (kを消去) してもよいが, 3次方程式と なって数学の範囲では解けない。 この問題では、最高次の項であるの項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=u とおく 共通解を x=α とおいて, 方程式にそれぞれ代入すると ①, a²+a+k=0.... ② 解答 2ω^+ka+4=0 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 よって k=2 または α=2 [1] k=2のとき 3章 11 1 2次方程式 αの項を消去。 この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 の判別式をDとすると D=12-4・1・2=-7 D0 であるから,この方程式は実数解をもたない。 ゆえに、2つの方程式は共通の実数解をもたない。 2つの方程式はともに x2+x+2=0となり,この方程式 数学の範囲では, x'+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x2-6x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 < α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 をもつ。 以上から k=-6, 共通解はx=2 注意 上の解答では, 共通解 x=α をもつと仮定してαやkの値を求めているから, 求めた値に対して, 実際に共通解をもつか, または問題の条件を満たすかど うかを確認しなければならない。 (at)

未解決 回答数: 1
1/175