学年

教科

質問の種類

数学 高校生

(1)の定積分の問題なのですが、aとおいたあとの式までは理解できるのですが、その後どうして解答の2行目のような式になるのかが理解できません。教えて頂きたいです。

378 (1) f(x)=6x-x+S_f(t)dt 次の等式を満たす関数 f(x) を求めよ。 基本 例題 241 定積分で表された関数 (2) f(x)=f(x+1)s (d+) 000 Sdt-a. Su よって Sof(t) 指針 (1) f(x)はこれから求めようとする関数なので,定積分f(t)dt を計算するこ Sit -1 =FD-F また できない。ここで,F(x)=(x)とすると, S., であるから,S,f(t)dt は定数である。 よって、f(t)dt=a (a は定数) とおくと, f(x) =6x-x+αと表される Stadt=aである。この定積分を計算しての値を求める。 (2)f'(x+1)(0) は変数を含むから、f(x+ff(e)dr=(定数)とおくこと ない。そこで、まずはf(x+1)f(t)de=S,xf(t) dt+Sザ(t)dt と変形する。 そして、Soxf(edt において,xは積分変数に無関係であるから」の前に とができ、S'(x+1)f(t)dt=xff(t)dt + Suf(t) dt と変形できる。 Sof(t) dt と Sof(t) dt は異なる定積分であるから,それぞれを別の文字(定数 おく。 ゆえに よって これを解い したがって 定積分の扱し (1)S_f(t)dt=a とおくとf(x)=6xx+α (2) について 検討 × 積分 × 解答 よってS,f(t) dt=S(6t-t+a)dt ゆえに よって したがって (2) =2S(6t+a)dt =2[21³+at] =2(2+α) 2(2+α)=a a=-4 f(x)=6x2-x-4 S'(x+1)f(t)dt=Soxf(t)at+Soff(t)dt x は積分変数 tに無関係であるから Sxf(t)dt=xf(t)dt(s) ゆえに f(x)=xff(t)dt+Souf(t)dt+1 Sot ① S の定積分 -a 偶数次は25 また、> 奇数 0 定積分の S,f(t)dt=aから。 f(x)=6x2-x+a S'(x+1)f(nat f(x)+ xは定数として扱い 積分の前に出す。 練習 次の (1) ②241

未解決 回答数: 0
数学 高校生

数1です。 一枚目が解説、2枚めが問題なんですが、解説を読んでも⑶と⑷がなぜこんなグラフになるのか分かりません。もう少し詳しく説明してくださる方いましたら、教えてもらえると嬉しいです。 よろしくお願いします🙇

38- -4 プロセス数学Ⅰ y=-x2+2ax-4a+1 を変形するとal y=(x-a)2+α2-4a+1 (−1≦x≦2) 関数y=-x2+2ax-4a+1のグラフは上に凸の 放物線で, 軸は直線x=α, 頂点は点 x=a+1のとき y=a22a (1) [1] a+1<2 [1] 3 5 すなわち すなわちx= で最大値をとる。 2' 2 <1のとき 1 (a, a2-4a+1) である。 また x=1のとき y=-6a, グラフは [図] の実線 部分のようになる。 よって, [3] 2<a+ [3]11 a+1 すなわち a- a+1 Qa x=2のとき [1] a<−1 のとき -1≦x≦2でのグラ フは [図] の実線部分 y=-3 x=α+1で最小値 [1] y1 a22a をとる。 [2] a≦2≦a+1 [2]y a 2 [グラフは [図] の実線 0 x 部分のようになる。 よって, -11 すなわち のようになる。 1≦a≦2 のとき よって, x=α+1で最大値α2-2a をとる。 [1]~[3] から a O x=-1で 157 最大値-6αをとる。 グラフは [図] の実線 部分のようになる。 よって a+1 a 2 3 a. のとき x=αで最大値 α-4a + 3 [2] -1≦a≦2のとき -1≦x≦2でのグラフは [図] の実線部分のよ うになる。 0 3 5 x=2で最小値 -1 をとる。 -1 12/2kaのとき よって, x=αで最大値 α-4a+1をとる。 [3] 2<αのとき [3] y [3] 2 <αのとき -1≦x≦2でのグラフは [図] の実線部分のよ うになる。 よって, x=2で最大値-3をとる。 グラフは [図] の実線 部分のようになる。 よって, (3) m a=2のとき x=a+1で最大値α2-2a (3) (1) から, 関数のグラフは [図] のようになる。 (4) (2) から, 関数のグラフは [図] のようになる。 (4) x=2 2 で最大値 -2 3 x =αで最小値 3) α24a+3 をとる。 0 a+1x [2] y1 Oa 2 -1- x [3] y -1 2 a [1]~[3] から -1- 3 10 a<1のとき 1≦a≦2 のとき x=α+1で最小値α2-2a x=2で最小値10 12/3 2 O 0 a -1 2<a のとき x =αで最小値α2-4a +3 1 (2) 定義域の中央の値は + 2 164 [1]~[3] から a<-1のとき [1] a + 1/2 <2 [1] 31 すなわち x=-1で最大値-6a -1≦a≦2 のとき x=αで最大値α2-4a+1 ak2のとき a+ 1 a+1 2<aのとき x=2で最大値 -3 [参考] 最小値を求める場合は,グラフが上に凸の とき,軸から最も遠いxの値を考える。 グラフは [図] の実線 部分のようになる。 よって, a2 売価を x円値上げすると, 1日の売り上げ 個数は (300-2x) 個になる。 x≧0 かつ 300-2x≧0 であるから 0x150 1日の売り上げ金額をy円とすると 171 1 y=(100+x)300-2x) 右辺を変形すると -1 すなわち, 軸 x=αの位置について以下のように 場合分けをする。 [1] 定義域の中央より左 x = αで最大値 α2-4a+3 をとる。 [2] 定義域の中央 [3] 定義域の中央より右 [2]1+1/2=2 [2]y すなわち (100+x)(300-2x) =-2x2+100x +30000 =-2(x-25)2+31250 よって, yはx=25で 最大値31250 をとる。 したがって, 売価は 125円にすればよい。 31250 30000 163 y=x2-4x+3を変形すると y=(x-2)2-1 (a≦x≦a+1) =2のとき O 3a+1, a 2 関数 y=x2-4x+3のグラフは下に凸の放物線で, グラフは [図] の実線 部分のようになる。 3 025 150 4 軸は直線x=2, 頂点は点(2,-1) である。 また x=αのとき y=a2-4a+3, +よって, x=a, a+1

未解決 回答数: 1
数学 高校生

この問題の エオで解答2ページを見た時に矢印の変換がなぜそうなるかわからないです(>_<) なぜ上の式からBは-4にならないことがわかるのですか? 教えてください!!!!

例題太郎さんと花子さんは方程式の解の個数に関する問題について話している。 二人の会 話を読んで、下の問いに答えよ。 問題 3次方程式(x-2)(ar2+bx+4)=0 (a,bは定数) が異なる二つの実数解をもつと きαをの式で表せ。 太郎: この3次方程式は (1次式)×(2次式)=0の形になっているから,x-2=0より,一つの実 数解がx=2だとわかるよ。 花子: そうすると, 2次方程式 ax+bx+4=0が残りの一つの実数解をもてばいいから, (i) 2次方程式 ar²+bx+4=0がx=2以外の重解をもつ場合 (ii) 2次方程式 ar2+bx+4=0がx=2ともう一つの異なる解をもつ場合 を考えればいいね。 まずは (i) の場合を考えてみると・・・ 判別式を利用して, a= となるわ イウ 太郎: だけどこれだと2次方程式の解がx=2の場合も含んでいて, 2次方程式の重解がx=2 だと,3次方程式の解は一つになってしまうから 2次方程式の解がx=2となるときを除 外しよう。 花子: そうか。 つまり6 キエオだね。 太郎: その前に他に何か忘れていることはなかったかな? 花子: そういえば, 「3次方程式」 と書いてあるから・・・。 太郎: あっ! そうだ! ar+bx+4は必ず2次式になるから,αキ カだね。 次は, (ii) の場合を考えよう。 a を6で表した式や条件はキ になるね。 (1) ア イウエオ カに当てはまる数値を答えよ。 (2) キに当てはまるものを、次の①~③のうちから一つ選べ。 b2 a= 6-4, 0 16 ①a< 62 16 6-40 a=-(6+2), (6+2), 6-2 11- 11/12 (6+2), 6-4, -2 数学- 26

回答募集中 回答数: 0
数学 高校生

解答解説を作ってこいという課題を出されたのですが、全く分からず作ることができません😿 答えだけでなく解説も加えてお願いしたいです。 全問という大変なお願いをしてしまいすみません🙇🏻‍♀️

宿題数列{a} は +1=4+2 (n=1, 2, 3, ...) +a2+as=-42 第5問2枚目のマークシートの右側に解答すること あるクラスで次の宿題が出された太郎さんと花子さんがこの宿題について話している。 数列{6m} は を満たすものとする。また, 数列 (42)の初項から第n項までの和をS (n=1, 2, 3, ...) とする。 az*aitg. Q2 a2=Qit2. as=az+2. b1=1 bm+1=b+S (n=1,2,3,...) を満たすものとする。 (1) 数列 {4} の一般項と S を求めよ。 A-1 (2) T=2S(n=1,2,3, ...) とおく。 T, を求めよ。 " afidized (3)数列{bm) の一般項をもとめよ。また,-1)(n=2, 3, 4, …) を求めよ。 (4)6m (n=1,2, 3, ...) が最小となるような自然数の値を求めよ。 42-42 30146:42. 2の等差数列とわかるね。 イイとわかるね。だから, an= エ 22- オカ 太郎:まず(1) について考えよう。 ① から, 数列{m} は公差が 花子:そうだね。さらにa1+a2+αs=-42から,初項 α」が 数列 {4} の一般項は だね。 a₁ = -42-093 Qus 太郎: じゃあ, 等差数列の和の公式から Sm=n2 キク am=唄-平項 46- 701-48 a₁ = -16 だね。 (2) はどうやって解くのかな。 1 花子: 1 k=1 n(n+1)2n+1)とk=1 ケb n(n+1)の公式が使えるよ。 A=1 2 太郎: そうすると, T 1 = (n+1)シスだね。次は,(3)だ。 サ このとき

回答募集中 回答数: 0
数学 高校生

黄色の部分どういう計算したらこの答えが出ますか?どなたか教えてもらえると嬉しいです

514 |指針 00000 重要 例 66 数列の和と期待値,分散 トランプのカードが枚n≧3)あり,その中の2枚はハートで残りはスペード 枚ずつめくっていく。 初めてハートのカードが現れるのがX枚目であるとき である。 これらのカードをよく切って裏向けに積み重ねておき,上から順に1 (1) X=k(k=1,2,…....., n-1) となる確率 n を求めよ。 (2)Xの期待値 E(X) と分散 V (X) を求めよ。 解答 n-1 (2) 期待値はE(X)=2 kbk を計算して求めるが, kかにはんの多項式となるから, k=1 k,k2,k の公式 (p.438 参照) を利用してΣ を計算する。 計算の際,nはkに無関係であるから、nk=nkなどと変形。 (1) は,枚目に初めてハートが現れ、それまではす であるから p= KD 全部でん n |-1| (2) |E(X)=E¹ kpx= 2 k. 2(n-k) n(n-1) k=1 ペードn-2枚 ペードター前にイン 前に引いた スペード 枚でハート、つまり1枚でスペード引いてる = n-2 n-3 n-4 n n-1 n-2 n-1 k=1 2 n n(n-1) (n ² k-2 k²) k=1 スペースペースペード ハート n-2-(k-2) n-(k-2) 2 n(n-1) 6 n+1 3(n-1)*(n-1)=n+1 また (DE), (1) n-1 E(X²) = Σk²pk=k². 2(n−k) k=1 スペスペンハート = 2 n(n−1) 12²_1) {n • _/\_n(n+1)_ _²}\n(n+1)(2n+1}} 練習n 本 (nは3以上の (kt 前まで 3 だから ひ . • \n(n+1){3n—(2n+1)} 2²-₁ (n²k³²-2k³) / € 1.00 n(n-1) k=1 k=1 [奈良県医大 ] みで 2(n-k) -(k-1) n(n-1) だから けず よってV(X)=E(X)-{E(X)=n(n+1)(n+1)* (n+1)(n-2) 18 k-1枚までなら次は スペード の入場列に で 基本 64 ドが現れる確率 2 [n_ck-u 2 n(n-1){(n = n(n+1) (2n+1)== n²(n+1)²} <2r={{n(n+1) _ n(n+1) p=0であるから Σkpn=1 kpx k=1 またに関係しない n の式を 前に出す。 2k=n(n+1) 2k¹= n(n+1)(2+1) K-1枚までスペード (1)D やん けそう 重要 2枚の をXk (1) n (2) 2 指針 解答 星 検討 PLUS LONE

回答募集中 回答数: 0
1/14