学年

教科

質問の種類

数学 高校生

この⑵で、三角形の重心と、Pを通る直線を求めようとしたのですが、模範解答はその解き方ではないですが、わたしの解き方でも答えはでますよね?? でも解いてみると、2枚目の写真のようになって答えと違ってしまうんですけど、どこかで計算ミスしてるだけですかね、?

は、たの値に関係な ついての 恒等式 整理する。 ■3x+y-3=0 の交点を 恒等式と考える 係数比較法。 んについての恒等 る。 kA+B=0がんにつ ての恒等式 ⇔A=0, B=0 点の候補を求め、 それた なお、代入する YA めよ。 -2k=0 0 」,「対 83 直線と面積の等分 重要 3点A(6,13), B(1, 2), C(9, 10) を頂点とする △ABC について (2) 辺BCを1:3に内分する点Pを通り, △ABCの面積を2等分する直線の (1) 点Aを通り, △ABCの面積を2等分する直線の方程式を求めよ。 方程式を求めよ。 基本 75.78 指針 解答 大 (1) 三角形の面積比 等高なら底辺の比であるから 求める直線は, 辺BC を同じ比に分ける点, すなわち辺BCの中点を通る。 (2) 求める直線は, 点Pが辺BCの中点より左にあるから, 辺ACと交わる。 この交点をQとすると 等角→挟む辺の積の比(数学A: 図形の性質) 1 CP+CQ により CB・CA 2 これから、点Qの位置がわかる。 各/1+9 合 (1) 求める直線は,辺BCの中点 を通る。 この中点をMとする と、その座標は ACPQ △ABC 2+10 2' 2 y-13= 自由標は すなわち (5, 6) よって 求める直線の方程式は (x-6) HAGENT = 6-13 5-6 y=7x-29 ya ( 3・1+1・9 1+3 0 A(6, 13) P B(1,2) 3.2+1 10 1+3 3 したがって (2) 点Pの座標は すなわち (3,4) 辺AC上に点Qをとると、直線PQ が △ABCの面積を 2等分するための条件は ACPQ CP:CQ 3CQ 1 △ABC CB・CA 4CA 2 -Q C(9, 10) ・M x B ゆえに CQ:CA=2:3 よって, 点Qは辺 CA を2:1に内分するから, その座 /1.9+2.6 1.10+2.13 2+1 2+1 すなわち (7, 12) したがって,2点P Q を通る直線の方程式を求めると y-4= 12-4 7-3 (x-3) すなわち y=2x-2 M 8 ABS ( △ABMと△ACMの高 さは等しい。 135 <異なる2点(x1, yi), (x2, y2) を通る直線の方 程式は y-y=21(x-x) X2-X1 から <AABC= =12CA-CBsin C, ACPQ=CP-CQ sin C 3章 ACPQ CP-CQ △ABC CB・CA また BC: PC=4:3 一直線の方程式、2直線の関係 喫 3点 A (20,24), B(-4,-3), C(10, 4) を頂点とする △ABC について、辺BC を 883 2:5に内分する点Pを通り, ABCの面積を2等分する直線の方程式を求めよ。 p.140 EX 56

回答募集中 回答数: 0
数学 高校生

69.1.2 記述に問題ないですか? 問題がないなら、不要な文など(あれば)教えてほしいです。

1410 基本例題 69 重心と線分の比面積比 右の図の△ABC で, 点D, Eはそれぞれ辺BC, CA の中 点である。 また, AD と BE の交点をF,線分 AF の中点を G, CG と BE の交点をHとする。 BE=9のとき (1) 線分 FH の長さを求めよ。 (2) 面積について, △EBC=[ 練習 69 解答 (1) AD, BE は△ABCの中線であるから, その交点 F は △ABC の重心である。 よって ゆえに FE= BE=1/3×9=3 1 2+1 また, CとFを結ぶと, CG, FEは の中線であるか AFC ら、その交点Hは△AFC の重心である。 2 2+1 よって, FH: HE=2:1から FH= 口 (2) △FBC: △FBD=BC: BD =2:1 よって △FBC=2△FBD また △EBC: △FBC=EB: FB=3:2 ゆえに △EBC= BF:FE =2:1 | △FBD である。 指針 (1)点F は △ABCの中線 AD, BE の交点であるから,点Fは△ABCの重心 そこで,三角形の重心は各中線を2:1に内分するという性質を利用し,線分 の長さを求める。次に, 補助線CFを引き, AFC で同様に考察する。 3 2 (2)△EBCと△FBC, AFBCと△FBD に分けると,それぞれ高さは共通である。 よって、 面積比は底辺の長さの比に等しいことを利用する。 -------- まず, △FBC を △FBD で表し,それを利用して △EBC を △FBD で表す。 880064 CHART 三角形の面積比 等高なら底辺の比等底なら高さの比 AFBC p.407 基本事項 ④ =1/3×2. X2AFBD=3AFBD B ×FE= =1/3×3=2 A F D h h E 右の図のように,平行四辺形 ABCD の対角線の交点を 0, 辺BCの中点をMとし, AMとBDの交点を P 線分 OD の中点をQ とする。 (1) 線分PQの長さは,線分BDの長さの何倍か。 (2) △ABP の面積が6cm²のとき m. m 00000 B B かくれた重心を見つけ出す /G F D Pl A A H M 高さは図のんで共通。 ∴ 面積比=BC : BD C 高さは図のん で共通。 面積比=EB:FB 注意: は 「ゆえに」を表す 記号である。 0 Sut ) 指 C △定 定 AI よゆよ ま 944

回答募集中 回答数: 0
1/14