学年

教科

質問の種類

情報:IT 高校生

カで0からスタートした場合なぜj-1になるのですか?

目標 重要テーマを確実におさえよう! テーマ3 データの分析に関するプログラミング 例題:外れ値の扱いについて,箱ひげ図の場合は四 分位範囲の1.5倍を 「ひげ」 の長さの上限に して、その長さから外れるものを外れ値とす るという考え方がある。 外れ値がある場合 ひげを短くする 7個のデータ [-100 20 30 40 50 60,1000] のうち,外れ値を除外して平均値を求める以下の〈プ ログラム〉を作った。 この〈プログラム> では, 元 のデータ7個が配列 Data[0], Data[1], 四分位範囲 の1.5倍 四分位範囲 Data[6] に格納されており,第1四分位数を q1, 第 3 四分位数を q3 とし,四分位範囲はアで表せる。そして, 外れ値を除いたデータは 配列 Data_c[0], Data_c[1], ... に格納するものとする。 なお, すべての配列の添字は0か ら始まるものとする。 (1) Data=[-100,20,30, 40, 50, 60, 1000] (2) Data_c = [0,0,0,0,0,0,0] (3) q1=20 (4) g3=60 (5) j=0 (6) iを0からイ まで1ずつ増やしながら繰り返す : (7) | もし Data[i] = ウ and Data[i] <= エ ならば : (8) | | Data_c [j]=Data[i] (9) L L j = オ (10)s=0 (11)を0から カまで1ずつ増やしながら繰り返す: (12) L s = s +Data_c[i] (13) 表示する(キ) <プログラム> 空欄 ア ~ キに最も当てはまるものを, 次の解答群から一つずつ選べ。

未解決 回答数: 1
情報:IT 高校生

外れ値とならなかった個数をカウントした場合なぜj=j+1になるのですか?

テーマ3 データの分析に関するプログラミング 例題:外れ値の扱いについて,箱ひげ図の場合は四 分位範囲の1.5倍を 「ひげ」 の長さの上限に して、その長さから外れるものを外れ値とす るという考え方がある。 外れ値がある場合 ひげを短くする 四分位範囲 の1.5倍 四分位範囲 7個のデータ [-100 20 30 40 50,60,1000] のうち、外れ値を除外して平均値を求める以下の〈プ ログラム〉を作った。この〈プログラム〉では,元 のデータ7個が配列 Data[0], Data[1], Data[6] に格納されており,第1四分位数を q1 第 3 四分位数を q3 とし、四分位範囲はアで表せる。そして, 外れ値を除いたデータは 配列 Data_c[0], Data_c[1], … に格納するものとする。 なお、すべての配列の添字は0か ら始まるものとする。 Data=[-100,20,30, 40,50,60,1000] Data_c=[0,0,0,0,0,0, 0] q1=20 g3 = 60 (1) (2) (3) (4) (5) j=0 (6) i を 0 から イ まで1ずつ増やしながら繰り返す: (7) | もし Data[i]>= ウ and Data[i] <= エ ならば: (8) | Data_c[j] = Data[i] (9) LLj = オ れる。 (10) s=0 (11) iを0から カ まで1ずつ増やしながら繰り返す : (12) L s = s +Data_c[i] (13) 表示する(キ) ~ <プログラム> 空欄 ア キに最も当てはまるものを,次の解答群から一つずつ選べ。

未解決 回答数: 0
情報:IT 高校生

式を教えてほしいです

自動保存 オン 2481033・・・ ・最終更新日時 : 金 13:12 v 検索 ファイル ホーム 挿入 ページレイアウト 数式 データ 校閲 表示 ヘルプ MS ゴシック v 11 Aˆ A 三 標準 貼り付け BIU く < ✓ A ✓ く クリップボード フォント ☑ 配置 N7 Xfx B C D E F G H 3 1) IF関数とCOUNTIF関数を利用して条件に従い それぞれ指定された値を表示させよう。 K L M 授業実施日 ("出”は出席: "火"は欠席) 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 氏名 4/16 4/23 4/30 5/14 5/28 6/11 6/18 6/25 7/2 7/9 7/16 7/23 6 辛子れん子 欠 目白次郎 8 清瀬ひばり 9 田無小平 10 菊名みらい 11 練馬ちちぶ 出欠出出出出 欠出出出欠 出出出 欠 出欠出出出出 出 欠 Et 出 欠 出 出 出 出 欠 出 出 出出出欠欠 出出出欠 出出出出欠出 欠出出出欠出 出欠出出出 EE B 出 出出出出出出 出欠出 出 出 出 問1 問2 問3 問4 問5 (特別課題) 問6 (発展課題) + 準備完了 アクセシビリティ: 検討が必要です 条件付き書式 挿入 テーブルとして書式設定 v 削除 %, :00 .0 ←0 .00 セルのスタイル 書式 ✓ 数値 スタイル セル 【刊定】 3回を超えて欠席した場合 “不可”を表示 それ以外は空白 不可 IF関数と COUNTIF関数と組み合わせ P R ロコメント 共有 ↓ 並べ替えと フィルター 編集 検索と 選択 アド アドイン < #NAME? 欠3<="不可" 解答例 それ以外 959 囲 圓 四 T U + 62%

回答募集中 回答数: 0
情報:IT 高校生

⑶ってなぜ、書いているような数式になるんですか?💦

③ 下図のように表計算ソフトを利用して座席を決める。 座席番号と位置を決めておき、乱数の値の 小さい順に、出席番号を割り振る。 次の各問いに答えなさい。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (15) 16 17 18 19 20 21 22 23 38 39 40 41 42 43 44 A 座席番号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 37 38 39 40 41 42 B C 乱数 生徒番号 0.01781328 1 0.466087451 22 2 14 24 26 37 32 35 42 16 34 17 13 0.01923281 0.20563183 0.47722923 0.50534706 0.92785938 0.76808017| 0.84721213 0.99830741 0.26447127 0.84708513 0.27690907 0.20352437 0.16858377 0.97130205 0.06212899 0.11712606 0.97272104| 0.95984957 0.71022711 0.3787261 0.47431656 0.97782322 0.78276747 0.09375127 0.4979731 0.18616393 91 39 4 8 40 38 30 18 23 41 33 25 11 D (1) セルB2に入力する数式を答えなさい。 E 1 7 13 19 25 31 37 1 37 17 40 5 20 23 F 2 8 14 20 26 32 38 22 32 13 38 36 15 41 G 3 9 15 21 27 33 39 2 35 9 30 27 21 33 教卓 教卓 H 4 10 16 22 28 34 40 14 42 39 18 10 12 7 508563 座席番号 5 11 17 23 29 35 41 生徒番号 24 16. 4 28 6 25 J 6 12 18 24 130 36 42 26 34 8 29 31 19 11 (2) セルC2の数式をC3~C43 の範囲にコピーするとき、セルC2に入力する数式を答えなさい。 (3) セルE16の数式をE17 ~E22、F16~ J 22 の範囲にコピーするとき、セルE16 に入力する数式を答え なさい。 LOOKUP(E4,$A$2:$($43、3)

未解決 回答数: 1
情報:IT 高校生

受け渡し時刻はどう計算しますか?

# 2待ち行列 次の文章を読み, 問いに答えよ。 してドリンクができあがるのを待つというシステムをとっている。 オーナー 参考に混雑状況のシミュレーションを行うこととした。 以下が売上データを精 Wさんは最近受渡場所が混雑していることに気づき、 最近の売上データを 喫茶店S では、お客さんはレジでドリンクを注文した後,受渡場所まで移 査した結果である。 <精査結果 > ・お客さんの到着間隔は0分~6分の間である。 ・レジ担当は1人であり, レジでの注文と精算完了までに1分かかる。 ・調理担当は1人であり, ドリンクの調理時間は1分~5分である。 また、 ・お客さんは注文時刻の1分後に受渡場所に移動し, 商品の受渡を待つ。 待ち 注文時刻と同時にドリンクをつくりはじめるが,先のドリンクをつくり終え るまで、次のドリンクをつくりはじめることはできない。 時間は「受渡時刻- (注文時刻+1)」で求めるものとする。 AJRA ると、下表のようにまとめることができた。 この結果より, ある日の開店からの10人分のデータをシミュレーションす 客 1 3 2 4 5 8 9 6 10 7 到着間隔 2 4 3 6 1 0 2 5 0 到着時刻 注文時刻 0 2 6 9 15 16 16 18 23 23 0 2 6 9 15 16 16 18 23 調理時間 2 5 1 2 5 1 3 2 2 2 受渡時刻 2 7 8 待ち時間 1 4 1 2 (1) 表に記入 (2) (3) 23 (1) 4人目以降の到着時刻・注文時刻・受渡時刻・待ち時間を表に記入せよ。 (2) 10人のお客さんの平均待ち時間を答えよ。 (③3) このシミュレーションの結果、同時にドリンクの受けとりを待っているお 客さんの最大人数は何人と考えられるか答えよ。 [計算スペース] DEVEL 検印 ON-S DEN

回答募集中 回答数: 0
1/5