学年

教科

質問の種類

地学 高校生

問3の⑵がなぜ4となるのかがわかりません。助けてください😭

に 地球が球形であることは、紀元前4世紀にはすでに知られていた。アリストテレスらは自然現象の観察によ って、(ア)地球が丸い証拠をいくつか示していた。 紀元前3世紀には、エラトステネスは地球を球形と考 えて,はじめてその大きさを求めた。具体的には、ほぼ南北に位置するエジプトのアレキサンドリアとシェネ で、夏至の日の正午に観測される太陽の(A)の差と,アレキサンドリア~シエネ間の(B)から 地球の全周の長さを計算した。 17 世紀には,地球の形は完全な球ではなく,楕円を一方の軸のまわりに回転したときにできる回転楕円体で あると考えられるようになった。 そして 18世紀には、フランスの測量隊が(ウ)高緯度地方と低緯度地方で、 緯度差 1° あたりの経線の長さを測量することによって、このことを確かめた。 (エ)回転楕円体の長軸の長さを a, 短軸の長さを b として,- a-b a で表される値を(C)という。 また,地球の大きさ・形に最も近い回転楕円体を(D)という。(D )はなめらかな表面の立体である が,実際の地球の表面にはさまざまな凹凸がある。 問1 文章中の下線部(ア)について述べた次の文abの正誤の組合せとして最も適当なものを,後の1~4 のうちから一つ選び, 番号で答えよ。 a 南北に離れた2地点では,同じ日時でも見える星が異なる。 b 日食のとき, 太陽は丸く欠けていく。 生こ a 1 正 b a 正 A 正 b 誤 3 誤 a b a b 正 4 誤 誤 問2 文章中の空欄 (A)~(D)に入れる適当な語を,それぞれ答えよ。 問3 次の(1)(2)の各問いに答えよ。 (1) 文章中の下線部 (イ) に関連して, 地球を球形と仮定し, 国土地理院発行の5万分の1の地形図をもとに地球の半径を 求めることを考える。 図1のように, 5 万分の1の地形図の 上端から下端までの長さを r [cm], 上端と下端の緯度の差を [°〕 とする。 ① 地図上の上端から下端までの距離は、 実際の距離では 何kmに相当するか。 r を用いて答えなさい。 なお,5万分の1の地形図上での 1 cm は,実際の 0.5 km に相当する。 ②地球全周の長さ L [km] を, r と 0 を用いた式で表せ。 上端 T[cm] 下端 図15万分の1の地形図 0 (°) (2) 文章中の下線部 (ウ)に関連して述べた次の文章中の空欄 (E) ( F )に入れる語句の組 合せとして最も適当なものを、後の1~4のうちから一つ選び、番号で答えよ。 北海道と沖縄の5万分の1の地形図を用いて, 地球を球形と仮定し, それぞれの地形図の緯度差 0 は等 しいものとして, それぞれの地形図から地球の半径を求めた。 すると, それぞれの地形図の緯度差 0 は等し いにもかかわらず, 北海道の地形図から求めた地球の半径の方が, 沖縄の地形図から求めた地球の半径より も(E)ことがわかった。 これは,地球が極半径よりも赤道半径の方が ( F ) 回転楕円体に近い形 をしているためである。 E F 1 短い 短い 3 長い 短い 文中の下()に由 24 E F 短い 長い 長い 長い

回答募集中 回答数: 0
地学 高校生

なぜマントルと外核の境界面の深さが2900㎞とわかるのですか教えてください🙇🏻‍♀️

直接波が 2 走時曲線震央距離を横軸に, 走時 (地震波の到〔秒] 達時間) を縦軸にとったグラフ。 先に到着 屈折波が 先に到着 60- (1)震央距離が短い地震 震央距離が数百km 程度走 の地震の走時曲線の折れ曲がりから,モホロビチッ チ不連続面の深さがわかる。 屈折波 40- 速度 大 時 20- 直接波 (2) 震央距離が非常に長い地震 S波が震央距離 103° より遠くに伝わらないことから, 外核が液体であ ること, マントルと外核の境界面の深さが約 速度 小 0 100 200 300 400 震央距離 [km] 速度 小 直接波 2900kmであることなどがわかる。 震源 (速度小) |地殻 モホ面 速度 大 屈折波 震央距離が短い地震 マントル (速度大 [分] 25] 201 S波 走時 P波 -S波 S波の影 ---内核の表面で反射 したP波 103% P波 15 P波 の影 10 P波は外核とマントルの境界 で屈折するため,地表に P波の影の部分(シ P波の S ャドーゾーン】 波 ができる。 の 143° 影 5 P波 震源 -180 103° 143°(角度) ←マントル核→ 内核 外核 マントル 地殻 45° 90° 135° 180° 地殻 <固体〉〈液体> 0 0.5 1 1.5 2 <固体> FeNi (Fe,N) (かんらん岩質) 震央距離 〔万km〕 6400 5100 2900 0[km〕 震央距離が非常に長い地震 40 第1部 固体地球とその活動

解決済み 回答数: 1
地学 高校生

(2)の問題で毎回計算ミスをしてしまうんですけど、簡単に計算できる方法などあったりしますか?

重要問題 1 地球の大きさ 地球の大きさに関する次の文を読み, 後の問いに答えよ。 紀元前230年ごろ、エラトステネスが初めて地球の大 きさを計算した。 計算には,夏至の日の太陽の南中高度 がエジプトのシエネでは90° シエネからほぼ真北に 900kmのところにあるアレクサンドリアでは 82.8°であ ることを利用し, 地球は球形であると仮定した。 ((1) アレクサンドリアとシエネの緯度差を求めよ。 アレクサンドリア 天頂 太陽光 82.8° 90° シエネ 2 文中の数値を用いて, 地球の半径を有効数字2桁で 求めよ。なお, 円周率は 3.14 とする。 ● センサー 同じ天体の南中高度の 差は緯度の差に等しい。 解説 (1)2地点の緯度差は、下の図のβである。 太陽光線 は平行なので,β = α となる。 よって, ●センサー 地球の大きさは, 弧の 長さが中心角に比例する ことを利用して求める。 センサー [有効数字の計算] 途中の計算では問題文 の指示より1桁多く計算 し、最後に四捨五入して 指示された桁にすればよ α =90° 82.8°=7.2° (2) シエネとアレクサンドリアとの 緯度差は7.2° であり、 またその 間の距離は900km である。 中心 角と円弧の長さとの比例関係か ら、地球の半径をR とすると, 900km 2×3.14×R = 7.2° : 360° 900kmx360° したがって, R=- -≒7166km 2×3.14×7.2° 有効数字2桁のため, 7.2×10km と答えればよい。シリ い。 答 (1) 7.2°(2) 7.2×10°km な るほど! 地球の大きさの計算 求めるものが円周の長さか半径か、間違えやすいのでよく注意しよう。

解決済み 回答数: 1
地学 高校生

問1をわかりやすく解説してほしいです🙇‍♀️

重要例題 3 地震の発生と規模 4分 北 白矢印は外力 いま, 右の図1のように外力が作用する地域で地震が発生し, 断層が生じた とする。 問1 図1のように, 東西方向に水平な圧縮力が最大で, 垂直方向の圧縮力が 1 最小のときに形成される断層はどれか。 次の①~⑤のうちから最も適当なものを一つ選べ。 ① ② 北金 北 ③ 北 ④中北 ⑤ 北 下盤 上盤- 上盤 下盤 向 問2 地震の規模 (マグニチュード)は,そ の地震の際に放出されるエネルギーに関 連し、両者の間には、 右の図2のような 関係がある。 また, 地震のエネルギー は,地震の際に生じる断層面の面積(長 さ×幅)と断層のずれの量の積に比例す ると考えられる。 7 6 5 ネ 4 ル ギ 3 (1016J) 2 1 マグニチュードがそれぞれ, 7.3, 7.9000 0. の二つの地震について, 大きいほうの地 震の断層のずれの量が,小さいほうの地 7.0 7.2 7.4 7.6 7.8 8.0 マグニチュード 図2 地震のマグニチュードとエネルギーの関係 震の断層のずれの量の2倍であったと仮定すれば, 大きいほうの地震の断層面の面積は,小さいほ うの地震の断層面の面積の何倍程度になるか。次の①~④のうちから最も適当なものを一つ選べ。 ①2倍 ② 4 倍 0001 ③8倍 ④ 16倍 [1997 本試 改] 考え方 明 1 別れはま級と

回答募集中 回答数: 0
地学 高校生

2番の問題わかりやすく説明していただきたいです

2つのピーク 重要問題 1 地球の大きさ 地球の大きさに関する次の文を読み, 後の問いに答えよ。 紀元前230年ごろ,エラトステネスが初めて地球の大 きさを計算した。計算には,夏至の日の太陽の南中高度 がエジプトのシエネでは90°シエネからほぼ真北に 100kmのところにあるアレクサンドリアでは 82.8°であ ることを利用し,地球は球形であると仮定した。 (1) アレクサンドリアとシエネの緯度差を求めよ。 アレクサンドリア 天頂 太陽光 182.8° 90° (2)文中の数値を用いて, 地球の半径を有効数字2桁で 求めよ。 なお,円周率は 3.14 とする。 シエネ ●センサー 同じ天体の南中高度の 差は緯度の差に等しい。 解説 (1)2地点の緯度差は,下の図のβである。太陽光線 は平行なので, β = α となる。 よって, センサー 地球の大きさは,弧の 長さが中心角に比例する ことを利用して求める。 センサー α =90°- 82.8°=7.2° (2) シエネとアレクサンドリアとの 緯度差は7.2°であり,またその 間の距離は900km である。 中心 角と円弧の長さとの比例関係か 地球の半径をR とすると, 900km: 2×3.14×R =7.2° : 360° [有効数字の計算] 途中の計算では問題文 の指示より1桁多く計算 し、最後に四捨五入して 指示された桁にすればよ い。 したがって,R= 900km × 360° 2×3.14×7.2° ≒7166km 有効数字2桁のため, 7.2 × 10km と答えればよい。 内 答 (1) 7.2° (2) 7.2×10°km るほど! 地球の大きさの計算 a

回答募集中 回答数: 0
地学 高校生

問2がいまいちよく理解できません。分かりやすく解説していただけるとうれしいです。お願いします

思考 133. 銀河系の構造図は、銀河系の構造を模式的に示したものである。 次の文章を読み、 図を参考にして以下の問いに答えよ。 銀河系のおよそ(ア)個の恒星は,主に 直径2万光年の球状の(イ)と直径約10万 光年の円盤部に分布している。 また, およそ 約200個のウ)星団は、銀河系全体を取 り囲む直径約15万光年の球状の領域である 35. (エ)に分布している。 太陽系は、銀河系の中心から約 2.8万光年 に位置し, 速さ約220km/sで公転している。 このことから, 銀河系の中心の周りを一周す。 20-00xN るのに約(オ億年かかることがわかる。 問1 文章中,図中の空欄 (ア)~(エ)に入る最も適当な語または数値を答えよ。 問2 太陽系が銀河系の中心を中心とする円周上を,一定の速さで運動していると仮定し (オ)を有効数字2桁で求めよ。 ただし, 光の速度=30万km/s,π= 3.14 とし, 途中の計算式も答えよ。 問3 太陽系の年齢を46億歳とし, 太陽系が誕生してから現在までに銀河系の中心の周り を約何周したかを有効数字2桁で求めよ。 ただし, 太陽系の誕生以来,太陽系の軌道 は変化しなかったと仮定する。 途中の計算式も答えよ。 [知識] 星団 円盤部 イ エ 太陽 場合で2.8万光年 |10万光年 15万光年 (09 広島大 改 ) K 13 原 1²

回答募集中 回答数: 0
1/5