学年

教科

質問の種類

地学 高校生

問3の⑵がなぜ4となるのかがわかりません。助けてください😭

に 地球が球形であることは、紀元前4世紀にはすでに知られていた。アリストテレスらは自然現象の観察によ って、(ア)地球が丸い証拠をいくつか示していた。 紀元前3世紀には、エラトステネスは地球を球形と考 えて,はじめてその大きさを求めた。具体的には、ほぼ南北に位置するエジプトのアレキサンドリアとシェネ で、夏至の日の正午に観測される太陽の(A)の差と,アレキサンドリア~シエネ間の(B)から 地球の全周の長さを計算した。 17 世紀には,地球の形は完全な球ではなく,楕円を一方の軸のまわりに回転したときにできる回転楕円体で あると考えられるようになった。 そして 18世紀には、フランスの測量隊が(ウ)高緯度地方と低緯度地方で、 緯度差 1° あたりの経線の長さを測量することによって、このことを確かめた。 (エ)回転楕円体の長軸の長さを a, 短軸の長さを b として,- a-b a で表される値を(C)という。 また,地球の大きさ・形に最も近い回転楕円体を(D)という。(D )はなめらかな表面の立体である が,実際の地球の表面にはさまざまな凹凸がある。 問1 文章中の下線部(ア)について述べた次の文abの正誤の組合せとして最も適当なものを,後の1~4 のうちから一つ選び, 番号で答えよ。 a 南北に離れた2地点では,同じ日時でも見える星が異なる。 b 日食のとき, 太陽は丸く欠けていく。 生こ a 1 正 b a 正 A 正 b 誤 3 誤 a b a b 正 4 誤 誤 問2 文章中の空欄 (A)~(D)に入れる適当な語を,それぞれ答えよ。 問3 次の(1)(2)の各問いに答えよ。 (1) 文章中の下線部 (イ) に関連して, 地球を球形と仮定し, 国土地理院発行の5万分の1の地形図をもとに地球の半径を 求めることを考える。 図1のように, 5 万分の1の地形図の 上端から下端までの長さを r [cm], 上端と下端の緯度の差を [°〕 とする。 ① 地図上の上端から下端までの距離は、 実際の距離では 何kmに相当するか。 r を用いて答えなさい。 なお,5万分の1の地形図上での 1 cm は,実際の 0.5 km に相当する。 ②地球全周の長さ L [km] を, r と 0 を用いた式で表せ。 上端 T[cm] 下端 図15万分の1の地形図 0 (°) (2) 文章中の下線部 (ウ)に関連して述べた次の文章中の空欄 (E) ( F )に入れる語句の組 合せとして最も適当なものを、後の1~4のうちから一つ選び、番号で答えよ。 北海道と沖縄の5万分の1の地形図を用いて, 地球を球形と仮定し, それぞれの地形図の緯度差 0 は等 しいものとして, それぞれの地形図から地球の半径を求めた。 すると, それぞれの地形図の緯度差 0 は等し いにもかかわらず, 北海道の地形図から求めた地球の半径の方が, 沖縄の地形図から求めた地球の半径より も(E)ことがわかった。 これは,地球が極半径よりも赤道半径の方が ( F ) 回転楕円体に近い形 をしているためである。 E F 1 短い 短い 3 長い 短い 文中の下()に由 24 E F 短い 長い 長い 長い

回答募集中 回答数: 0
地学 高校生

問題の解説文、赤線から下の部分について上手く理解できません。分かりやすい解説をお願いします…

問5 東西に60km離れて並んだ地点XYと,地点Xと地点Yの中間の地点 Aから北に 48kmの距離に位置する地点Zで, ある地震を観測した。 次の 図3は,各観測地点の位置関係を示したものであり,地点Bは地点Aと地点 Zの中間の地点を示している。また,表1は,各観測地点で観測された初期 微動継続時間を示したものである。 表1より, 地点Xと地点Yでの初期微動 継続時間が等しいことから,この地震の震央は地点Z, 地点 A, 地点 B を含 む直線上にあることがわかる。 この地震について 震源から地点Aまでの距 へいたん 離と震央の位置の組合せとして最も適当なものを,下の①~④のうちから一 つ選べ。 なお、この地域の地表面は平坦であり, 震源距離 D (km) と初期微 動継続時間 T(秒) の間には,D=8T という関係が成り立つものとする。 5 Z 北 である。 問5 震源距離 D は, 初期微動継続時間 Tと比例定数によって D=kT と表される。 これを大森公式という。 比例定数は,通 常 6~8km/sである。 本間ではk=8とした。 問題の表1の値 を使用すると、 震源距離は, 地点 Xと地点Yでは8×6.25=50 km, 地点Zでは8×5.00=40kmである。 図1-5のように, 地点Xと地点Yを中心として震源距離 50 kmを半径とする円は地点Aを通る南北の線上で交わる。 地点 A 60 と地点X地点Yとの距離はそれぞれ =30kmであることか 2 ら、2つの円の交点と地点Aの距離は50-30=40kmである (図1-5)。震源が地点X, Yからともに50kmの距離にあると いうことは,地点X, Yを中心とした半径50kmの球面の交線上 にあるということであり,それは,直線XY と直交する平面上の, 地点Aを中心とした半径40kmの半円上に震源があるというこ とである (図1-6)。 したがって, 震源から地点Aまでの距離は 40km であることがわかる。 地点Aを含み, 直線XYと直交する平面は地点Zを含む(図1 -6)。 地点 Zから震源までの距離は40km であることから, 震 源を0とすると,Z・A・Oの3点からなる三角形は二等辺三角 形となり, △ABOと△ZBOは合同な直角三角形である。 した がって、震源の真上の地点である震央の位置が地点Bであること がわかる。 以上のことから② が正解である。 B |48km X A 60km 図3 ある地震の観測地点 北 B 24 km B 24 km 30km 地表 A Y 40km 40km 40km 50 km 震源 図1-5 図1-6 なお,図1-5で描いた2つの円に加えて, 地点Zを中心とし た半径40kmの円を描き, 地点X, Yを中心とする円との交点を 結ぶ共通弦を引くと, 3つの円の共通弦が地点Bで交わることか らも、震央の位置は地点Bであることがわかる (図1-7)。 表1 地点XYZにおける初期微動継続時間 B 観測地点 X Y Z x A Y 初期微動継続時間(秒) 6.25 6.25 5.00 図1-7 5 ・・・② 北 : L H

解決済み 回答数: 1